Publicação:
Automatic Classification of Three-Phase Flow Patterns of Heavy Oil in a Horizontal Pipe Using Support Vector Machines

dc.contributor.authorSerapiao, Adriane Beatriz de S. [UNESP]
dc.contributor.authorBannwart, Antonio C.
dc.contributor.authorPacheco, Fabiola
dc.contributor.authorMendes, Jose R. P.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2013-09-30T18:50:34Z
dc.date.accessioned2014-05-20T14:16:23Z
dc.date.available2013-09-30T18:50:34Z
dc.date.available2014-05-20T14:16:23Z
dc.date.issued2008-01-01
dc.description.abstractThe pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).en
dc.description.affiliationUNESP, IGCE, DEMAC, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP, IGCE, DEMAC, BR-13506900 Rio Claro, SP, Brazil
dc.format.extent284-294
dc.identifierhttp://dx.doi.org/10.1007/978-3-540-88636-5_27
dc.identifier.citationMicai 2008: Advances In Artificial Intelligence, Proceedings. Berlin: Springer-verlag Berlin, v. 5317, p. 284-294, 2008.
dc.identifier.doi10.1007/978-3-540-88636-5_27
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-57049102794
dc.identifier.urihttp://hdl.handle.net/11449/24939
dc.identifier.wosWOS:000261873400027
dc.language.isoeng
dc.publisherSpringer-verlag Berlin
dc.relation.ispartofMicai 2008: Advances In Artificial Intelligence, Proceedings
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleAutomatic Classification of Three-Phase Flow Patterns of Heavy Oil in a Horizontal Pipe Using Support Vector Machinesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer-verlag Berlin
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: