Logo do repositório

A Deep Boltzmann machine-based approach for robust image denoising

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

A Deep Boltzmann Machine (DBM) is composed of a stack of learners called Restricted Boltzmann Machines (RBMs), which correspond to a specific kind of stochastic energy-based networks. In this work, a DBM is applied to a robust image denoising by minimizing the contribution of some of its top nodes, called “noise nodes”, which often get excited when noise pixels are present in the given images. After training the DBM with noise and clean images, the detection and deactivation of the noise nodes allow reconstructing images with great quality, eliminating most of their noise. The results obtained from important public image datasets showed the validity of the proposed approach.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 525-533.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação