Publicação: The disturbing function for polar Centaurs and transneptunian objects
Carregando...
Arquivos
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the Solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance, as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a p:q resonance do not depend on the value of the resonance order |p - q| but only on its parity. Thus, all even resonance order eccentricity amplitudes are ∝e2 and odd ones ∝e to lowest order in eccentricity e. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.
Descrição
Palavras-chave
Asteroids: general, Celestial mechanics, Comets: general -Kuiper belt: general, Minor planets, Oort Cloud
Idioma
Inglês
Como citar
Monthly Notices of the Royal Astronomical Society, v. 471, n. 2, p. 2097-2110, 2017.