Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator with critical growth
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The aim of this paper is to establish two results about multiplicity of solutions to problems involving the 1-Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem [Formula presented] where Ω is a smooth bounded domain in RN, N≥2 and ξ∈{0,1}. Moreover, λ>0, q∈(1,1⁎) and [Formula presented]. The first main result establishes the existence of many rotationally non-equivalent and nonradial solutions by assuming that ξ=1, Ω={x∈RN:r<|x|<r+1}, N≥2, N≠3 and r>0. In the second one, Ω is a smooth bounded domain, ξ=0, and the multiplicity of solutions is proved through an abstract result which involves genus theory for functionals which are sum of a C1 functional with a convex lower semicontinuous functional.
Descrição
Palavras-chave
1-Laplacian, Functions of bounded variation, Operator, Variational methods
Idioma
Inglês
Citação
Journal of Differential Equations, v. 308, p. 545-574.




