Logotipo do repositório
 

Publicação:
Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

dc.contributor.authorLowe, Rachel
dc.contributor.authorCoelho, Caio A. S.
dc.contributor.authorBarcellos, Christovam
dc.contributor.authorCarvalho, Marilia Sa
dc.contributor.authorCatao, Rafael De Castro [UNESP]
dc.contributor.authorCoelho, Giovanini E.
dc.contributor.authorRamalho, Walter Massa
dc.contributor.authorBailey, Trevor C.
dc.contributor.authorStephenson, David B.
dc.contributor.authorRodo, Xavier
dc.contributor.institutionInst Catala Ciencies Clima
dc.contributor.institutionInst Nacl Pesquisas Espaciais
dc.contributor.institutionFundacao Oswaldo Cruz
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionMinist Saude
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.contributor.institutionUniv Exeter
dc.contributor.institutionInst Catalana Recerca & Estudis Avancats
dc.date.accessioned2018-11-26T15:28:52Z
dc.date.available2018-11-26T15:28:52Z
dc.date.issued2016-02-24
dc.description.abstractRecently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.en
dc.description.affiliationInst Catala Ciencies Clima, Climate Dynam & Impacts Unit, Barcelona, Spain
dc.description.affiliationInst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Cachoeira Paulista, Brazil
dc.description.affiliationFundacao Oswaldo Cruz, Rio De Janeiro, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, Brazil
dc.description.affiliationMinist Saude, Programa Nacl Controle Dengue, Coordenacao Geral, Brasilia, DF, Brazil
dc.description.affiliationUniv Brasilia, Fac Ceilandia, Brasilia, DF, Brazil
dc.description.affiliationUniv Exeter, Coll Engn Math & Phys Sci, Exeter Climate Syst, Exeter, Devon, England
dc.description.affiliationInst Catalana Recerca & Estudis Avancats, Barcelona, Spain
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente, Brazil
dc.description.sponsorshipSeventh Framework Programme
dc.description.sponsorshipSeventh Framework Programme EUPORIAS project
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipICREA
dc.description.sponsorshipIdSeventh Framework Programme: FP7-HEALTH.2011.2.3.3-2
dc.description.sponsorshipIdSeventh Framework Programme: 282378
dc.description.sponsorshipIdSeventh Framework Programme: FP7-ENV-2012-1
dc.description.sponsorshipIdSeventh Framework Programme: 308378
dc.description.sponsorshipIdSeventh Framework Programme EUPORIAS project: FP7-ENV.2012.6.1-1
dc.description.sponsorshipIdSeventh Framework Programme EUPORIAS project: 308291
dc.description.sponsorshipIdCNPq: 306863/2013-8
dc.description.sponsorshipIdCNPq: 309692/2013-0
dc.description.sponsorshipIdFinanciadora de Estudos e Projetos: 01.13.0353-00
dc.description.sponsorshipIdFAPERJ: E-23557/2014
dc.description.sponsorshipIdFAPESP: BEPE 2014/17676-0
dc.format.extent18
dc.identifierhttp://dx.doi.org/10.7554/eLife.11285
dc.identifier.citationElife. Cambridge: Elife Sciences Publications Ltd, v. 5, 18 p., 2016.
dc.identifier.doi10.7554/eLife.11285
dc.identifier.fileWOS000371885100001.pdf
dc.identifier.issn2050-084X
dc.identifier.urihttp://hdl.handle.net/11449/158748
dc.identifier.wosWOS:000371885100001
dc.language.isoeng
dc.publisherElife Sciences Publications Ltd
dc.relation.ispartofElife
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.titleEvaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazilen
dc.typeArtigopt
dcterms.rightsHolderElife Sciences Publications Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0003-3939-7343[1]
unesp.author.orcid0000-0002-1161-2753[3]
unesp.author.orcid0000-0003-4843-6180[10]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000371885100001.pdf
Tamanho:
2.77 MB
Formato:
Adobe Portable Document Format
Descrição: