Logotipo do repositório
 

Publicação:
Uma análise dos tweets de pré-candidatos a presidência do Brasil: aplicação do algoritmo de Latent Dirichlet Allocation (LDA)

Carregando...
Imagem de Miniatura

Orientador

Schlünzen Junior, Klaus

Coorientador

Pós-graduação

Curso de graduação

Estatística - FCT

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Trabalho de conclusão de curso

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O Latent Dirichlet Allocation (LDA) é um modelo generativo para grupos de dados discretos como corpus de texto. Modelos generativos são aqueles que aleatoriamente geram os dados a partir das variáveis latentes. Nesse estudo vamos analisar o perfil do Twitter de pré-candidatos a presidência do Brasil no ano de 2021, usando técnicas de mineração de texto como, frequência de termos através de nuvens de palavras, análise de sentimentos, análise de agrupamento e análise da frequência inversa do termo (TF-IDF), além da aplicação do algoritmo LDA para o grupo de perfis. Para a realização das análises foram colhidos oitenta mil tweets de cada pré-candidato no período de 08/09/2021 a 27/10/2021, os dados foram tratados eliminando qualquer caracter que fosse irrelevante para a análise. Os resultados indicaram os termos mais frequentes e relevantes para cada perfil e com a aplicação do algoritmo constatamos que existe um grande número de termos que compõem cada assunto e qual pré-candidato tem a maior probabilidade de ser citado em determinado assunto.

Resumo (inglês)

Latent Dirichlet Allocation (LDA) is a generative model for discrete data groups as a text corpus. Generative models are those that randomly generate data from latent variables. In this study we will analyze the Twitter profile of pre-candidates for the presidency of Brazil in the year 2021, using text mining techniques such as term frequency through word clouds, sentiment analysis, cluster analysis and inverse frequency analysis. of the term (TF-IDF), in addition to the application of the LDA algorithm for the profile group. In order to carry out the analysis, eighty thousand tweets were collected from each pre-candidate in the period from 09/08/2021 to 10/27/2021, the data were processed by eliminating any character that was irrelevant to the analysis. The results indicated the most frequent and relevant terms for each profile and with the application of the algorithm we found that there is a large number of terms that make up each subject and which pre-candidate is most likely to be cited in a given subject.

Descrição

Palavras-chave

Mineração de texto, Latent Dirichilet Allocation, Modelos de tópicos, TF-IDF, Análise de sentimentos, Text mining, Latent Dirichlet Allocation, Topic models, Sentiment analysis

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação