Logo do repositório
 

Osteoglycin post-transcriptional regulation by miR-155 induces cellular architecture changes in H9c2 cardiomyoblasts

dc.contributor.authorOliveira, Grasieli de [UNESP]
dc.contributor.authorFreire, Paula Paccielli [UNESP]
dc.contributor.authorMieko Omoto, Ana Carolina [UNESP]
dc.contributor.authorCury, Sarah Santiloni [UNESP]
dc.contributor.authorFuziwara, Cesar Seigi
dc.contributor.authorKimura, Edna Teruko
dc.contributor.authorDal-Pai-Silva, Maeli [UNESP]
dc.contributor.authorCarvalho, Robson Francisco [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-04T12:30:54Z
dc.date.available2019-10-04T12:30:54Z
dc.date.issued2018-11-15
dc.description.abstractSeveral studies have demonstrated dysregulated cardiac microRNAs (miRNAs) following cardiac stress and development of cardiac hypertrophy and failure. miRNAs are also differentially expressed in the inflammation that occurs in heart failure and, among these inflammatory-related miRNAs, the miR-155 has been implicated in the regulation of cardiac hypertrophy. Despite these data showing the role of miRNA-155 in cardiomyocyte hypertrophy under a hypertrophic stimulus, it is also important to understand the endogenous regulation of this miRNA without a hypertrophic stimulus to fully appreciate its function in this cell type. The first aim of the present study was to determine whether, without a hypertrophic stimulus, miR-155 overexpression induces H9c2 cardiac cells hypertrophy in vitro. The second objective was to determine whether osteoglycin (Ogn), a key regulator of heart mass in rats, mice, and humans, is post-transcriptionally regulated by miR-155 with a potential role in inducing H9c2 cells hypertrophy. Here, we show that, without a hypertrophic stimulus, miR-155 significantly repressed Ogn protein levels, but induce neither alteration in morphological phenotype nor in the expression of the molecular markers that fully characterize pathological hypertrophy of H9c2 cells. However, most importantly, Ogn silencing in H9c2 cells mimicked the effects of miR-155 overexpression in inducing cellular architecture changes that were characterized by a transition of the cell shape from fusiform to rounded. This is a new role of the post-transcriptional regulation of Ogn by miR-155 in the maintenance of the cardiac cell morphology in physiological and pathological conditions.en
dc.description.affiliationSao Paulo State Univ, Inst Biosci Botucatu, Dept Morphol, Botucatu, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Biomed Sci, Dept Cell & Dev Biol, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Inst Biosci Botucatu, Dept Morphol, Botucatu, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2012/13961-6
dc.description.sponsorshipIdFAPESP: 2014/14340-0
dc.format.extent9-15
dc.identifierhttp://dx.doi.org/10.1016/j.gene.2018.07.020
dc.identifier.citationGene. Amsterdam: Elsevier Science Bv, v. 676, p. 9-15, 2018.
dc.identifier.doi10.1016/j.gene.2018.07.020
dc.identifier.issn0378-1119
dc.identifier.urihttp://hdl.handle.net/11449/184881
dc.identifier.wosWOS:000445989300002
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofGene
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMimecan
dc.subjectCardiac cell morphology
dc.subjectCardiac pathological hypertrophy
dc.titleOsteoglycin post-transcriptional regulation by miR-155 induces cellular architecture changes in H9c2 cardiomyoblastsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0003-0649-8279[2]
unesp.author.orcid0000-0003-1062-7109[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentMorfologia - IBBpt

Arquivos