Logotipo do repositório
 

Publicação:
Implementação do algoritmo de treinamento do classificador Floresta de Caminhos Ótimos em GPU

dc.contributor.advisorPapa, João Paulo [UNESP]
dc.contributor.advisorBaldassin, Alexandro José [UNESP]
dc.contributor.authorIwashita, Adriana Sayuri [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-06-11T19:24:01Z
dc.date.available2014-06-11T19:24:01Z
dc.date.issued2013-05-15
dc.description.abstractTécnicas de reconhecimento de padrões têm como principal objetivo classificar um conjunto de amostras baseadas em um conhecimento a prioriou em alguma informação estatística obtida dessas amostras. Tal processo de aprendizado é a fase de maior consumo de tempo na grande maioria das técnicas de reconhecimento de padrõe. O problema ainda pode piorar em ferramentas de classificação interativas, nas quais o usuário é solicitado a rotular amostras que serão utilizadas para o treinamento, e após a classificação, os resultados podem ser refina-dos através de mais amostras rotuladas manualmente. Esta situação pode ser inaceitável para grandes bases de dados. Dado que muitos trabalhos tem sido orientados à implementação de vários algoritmos de reconhecimento de padrôes em ambiente General Purpose Graphics Processing Unit- GPGPU, o presente estudo objetivou a implementação da etapa de treinamento do classificador Floresta de Caminhos Ótimos em Compute Unified Device Architecture- CUDA visando aumentar a sua eficiência. Foi implementada uma otimização, do referido classificador utilizando os métodos tradicionais, ou seja, na Central Processing Unit- CPU, e demonstrou uma fase de treinamento cerca de duas vezes mais rápida que a versão original. A otimização do classificador em CUDA também demonstrou uma fase de treinamento mais rápida que a versão originalpt
dc.description.abstractPattern recognition techniques have as main objective to classify a set of samples ba-sed on a priori knowledge or statistical information obtained by these samples. This learning process is the most time-consuming phase in most pattern recognition techniques. The problem may become worse in interactive classification tools, in which the user is asked to label the samples that will be used for training, and after the classification, the results can be refined through more samples manually labeled. However, this may be unacceptable for large databa-ses. Since many studies have been oriented to the implementation of various pattern recognition algorithms on General Purpose Graphics Processing Unit - GPGPU environment, this study ai-med the implementation of the training stage of the Optimum-Path Forest classifier in Compute Unified Device Architecture - CUDA in order to increase its efficiency. We have implemented an optimization of that classifier using the traditional methods, i.e., on the Central Processing Unit - CPU, and it has demonstrated a training phase about two times faster than the original version. The classifier optimization in CUDA has also shown a training phase faster than the original versionen
dc.format.extent42 f. : il. color.
dc.identifier.aleph000715089
dc.identifier.capes33004153073P2
dc.identifier.citationIWASHITA, Adriana Sayuri. Implementação do algoritmo de treinamento do classificador Floresta de Caminhos Ótimos em GPU. 2013. 42 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho. Instituto de Biociências, Letras e Ciências Exatas, 2013.
dc.identifier.fileiwashita_as_me_sjrp.pdf
dc.identifier.urihttp://hdl.handle.net/11449/89347
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.sourceAleph
dc.subjectReconhecimento de padrõespt
dc.subjectUnidades de processamento graficopt
dc.subjectFloresta de caminhos ótimospt
dc.subjectPattern perceptionpt
dc.titleImplementação do algoritmo de treinamento do classificador Floresta de Caminhos Ótimos em GPUpt
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.advisor.lattes4738829911864396[2]
unesp.advisor.orcid0000-0001-8824-3055[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.graduateProgramCiência da Computação - FC/FCT/IBILCE/IGCE 33004153073P2pt
unesp.knowledgeAreaComputação aplicadapt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
iwashita_as_me_sjrp.pdf
Tamanho:
852.06 KB
Formato:
Adobe Portable Document Format