Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Comparison of Metaheuristic Algorithms for Photovoltaic Systems Allocation in a Power Distribution Feeder

dc.contributor.authorJaramillo-Leon, Brian [UNESP]
dc.contributor.authorAlmeida, José
dc.contributor.authorSoares, João
dc.contributor.authorLeite, Jônatas B. [UNESP]
dc.contributor.authorZambrano-Asanza, Sergio [UNESP]
dc.contributor.authorVale, Zita [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPolytechnic of Porto
dc.date.accessioned2025-04-29T20:10:29Z
dc.date.issued2024-01-01
dc.description.abstractThe government's endorsement of renewable energy objectives and the requirement to use carbon-free energy sources to keep up with the growth in energy consumption have expanded the integration of solar photovoltaic (PV) systems in distribution networks. However, an excessive PV penetration may lead to operational threshold violations. PV system allocation that is optimal in terms of placement and sizing can enhance power quality and grid performance. We formulate the allocation of PV systems as a combinatorial mixed-integer nonlinear model to maximize the distribution network PV hosting capacity (PVHC). We chose three differential evolution (DE) mutation strategies, namely DE/rand/1/bin, DE/current-to-best/1/bin, and DE/rand/1/either-or, and the vortex search (VS) algorithm to solve that optimization problem. This study aims to identify the method that solves the PV allocation problem with higher quality. We performed manual parameter tuning to set both the population and iteration numbers for each algorithm. In addition, for the DE mutation strategies, we set the scale factor and crossover rate parameters. The results show that the VS provides the highest grid PVHC.en
dc.description.affiliationSão Paulo State University Department of Electrical Engineering
dc.description.affiliationGecad Lasi Polytechnic of Porto
dc.description.affiliationCentrosur São Paulo State University Department of Planning Department of Electrical Engineering
dc.description.affiliationUnespSão Paulo State University Department of Electrical Engineering
dc.description.affiliationUnespCentrosur São Paulo State University Department of Planning Department of Electrical Engineering
dc.description.sponsorshipNextGenerationEU
dc.format.extent338-343
dc.identifierhttp://dx.doi.org/10.1109/CAI59869.2024.00089
dc.identifier.citationProceedings - 2024 IEEE Conference on Artificial Intelligence, CAI 2024, p. 338-343.
dc.identifier.doi10.1109/CAI59869.2024.00089
dc.identifier.scopus2-s2.0-85201225223
dc.identifier.urihttps://hdl.handle.net/11449/307845
dc.language.isoeng
dc.relation.ispartofProceedings - 2024 IEEE Conference on Artificial Intelligence, CAI 2024
dc.sourceScopus
dc.subjectdifferential evolution
dc.subjectdistribution system
dc.subjecthosting capacity
dc.subjectmetaheuristic algorithm
dc.subjectphotovoltaic allocation
dc.subjectvortex search
dc.titleComparison of Metaheuristic Algorithms for Photovoltaic Systems Allocation in a Power Distribution Feederen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções