Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Comparing Video Analysis to Computerized Detection of Limb Position for the Diagnosis of Movement Control during Back Squat Exercise with Overload

dc.contributor.authorPeres, André B. [UNESP]
dc.contributor.authorSancassani, Andrei [UNESP]
dc.contributor.authorCastro, Eliane A. [UNESP]
dc.contributor.authorAlmeida, Tiago A. F. [UNESP]
dc.contributor.authorMassini, Danilo A. [UNESP]
dc.contributor.authorMacedo, Anderson G. [UNESP]
dc.contributor.authorEspada, Mário C.
dc.contributor.authorHernández-Beltrán, Víctor
dc.contributor.authorGamonales, José M.
dc.contributor.authorPessôa Filho, Dalton M. [UNESP]
dc.contributor.institutionCiência e Tecnologia de São Paulo (IFSP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Alfenas (UNIFAL)
dc.contributor.institutionEscola Superior de Educação
dc.contributor.institutionSport Physical Activity and Health Research & INnovation CenTer (SPRINT)
dc.contributor.institutionUniversidade de Lisboa
dc.contributor.institutionUniversidade de Évora
dc.contributor.institutionLife Quality Research Centre (CIEQV-Leiria)
dc.contributor.institutionUniversity of Extremadura
dc.contributor.institutionUniversidad Francisco de Vitoria
dc.contributor.institutionUniversidad a Distancia de Madrid
dc.date.accessioned2025-04-29T20:09:29Z
dc.date.issued2024-03-01
dc.description.abstractIncorrect limb position while lifting heavy weights might compromise athlete success during weightlifting performance, similar to the way that it increases the risk of muscle injuries during resistance exercises, regardless of the individual’s level of experience. However, practitioners might not have the necessary background knowledge for self-supervision of limb position and adjustment of the lifting position when improper movement occurs. Therefore, the computerized analysis of movement patterns might assist people in detecting changes in limb position during exercises with different loads or enhance the analysis of an observer with expertise in weightlifting exercises. In this study, hidden Markov models (HMMs) were employed to automate the detection of joint position and barbell trajectory during back squat exercises. Ten volunteers performed three lift movements each with a 0, 50, and 75% load based on body weight. A smartphone was used to record the movements in the sagittal plane, providing information for the analysis of variance and identifying significant position changes by video analysis (p < 0.05). Data from individuals performing the same movements with no added weight load were used to train the HMMs to identify changes in the pattern. A comparison of HMMs and human experts revealed between 40% and 90% agreement, indicating the reliability of HMMs for identifying changes in the control of movements with added weight load. In addition, the results highlighted that HMMs can detect changes imperceptible to the human visual analysis.en
dc.description.affiliationInstituto Federal de Educação Ciência e Tecnologia de São Paulo (IFSP), SP
dc.description.affiliationGraduate Programme in Human Development and Technologies São Paulo State University (UNESP), SP
dc.description.affiliationDepartment of Physical Education School of Sciences (FC) São Paulo State University (UNESP), SP
dc.description.affiliationPos-Graduation Program in Rehabilitation Sciences Institute of Motricity Sciences Federal University of Alfenas (UNIFAL), MG
dc.description.affiliationInstituto Politécnico de Setúbal Escola Superior de Educação
dc.description.affiliationSport Physical Activity and Health Research & INnovation CenTer (SPRINT)
dc.description.affiliationCentre for the Study of Human Performance (CIPER) Faculdade de Motricidade Humana Universidade de Lisboa
dc.description.affiliationComprehensive Health Research Centre (CHRC) Universidade de Évora
dc.description.affiliationLife Quality Research Centre (CIEQV-Leiria)
dc.description.affiliationTraining Optimization and Sports Performance Research Group (GOERD) Faculty of Sport Science University of Extremadura
dc.description.affiliationFacultad Ciencias de la Salud Universidad Francisco de Vitoria
dc.description.affiliationPrograma de Doctorado en Educación y Tecnología Universidad a Distancia de Madrid
dc.description.affiliationUnespGraduate Programme in Human Development and Technologies São Paulo State University (UNESP), SP
dc.description.affiliationUnespDepartment of Physical Education School of Sciences (FC) São Paulo State University (UNESP), SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCAPES: 88887.310463/2018-00
dc.description.sponsorshipIdCAPES: 88887.310796/2018-00
dc.description.sponsorshipIdCAPES: 88887.572557/2020-00
dc.description.sponsorshipIdCAPES: 88887.580265/2020-00
dc.identifierhttp://dx.doi.org/10.3390/s24061910
dc.identifier.citationSensors, v. 24, n. 6, 2024.
dc.identifier.doi10.3390/s24061910
dc.identifier.issn1424-8220
dc.identifier.scopus2-s2.0-85189017267
dc.identifier.urihttps://hdl.handle.net/11449/307457
dc.language.isoeng
dc.relation.ispartofSensors
dc.sourceScopus
dc.subjectcomputer modelling
dc.subjectmotor activity
dc.subjectpattern recognition
dc.subjectstrength training
dc.titleComparing Video Analysis to Computerized Detection of Limb Position for the Diagnosis of Movement Control during Back Squat Exercise with Overloaden
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-0389-8779[1]
unesp.author.orcid0000-0002-4557-2921[3]
unesp.author.orcid0000-0001-8558-8509[4]
unesp.author.orcid0000-0003-1088-0040[5]
unesp.author.orcid0000-0001-7076-0900[6]
unesp.author.orcid0000-0002-4524-4784[7]
unesp.author.orcid0000-0002-7449-5734[8]
unesp.author.orcid0000-0002-2444-1535[9]
unesp.author.orcid0000-0003-3975-9260[10]

Arquivos

Coleções