Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
| dc.contributor.author | Camargo da Silva, Vinícius [UNESP] | |
| dc.contributor.author | Paulo Papa, João [UNESP] | |
| dc.contributor.author | Augusto Pontara da Costa, Kelton [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T20:04:27Z | |
| dc.date.issued | 2023-01-01 | |
| dc.description.abstract | Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification. | en |
| dc.description.affiliation | São Paulo State University-UNESP | |
| dc.description.affiliationUnesp | São Paulo State University-UNESP | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | FAPESP: #2013/07375-0 | |
| dc.description.sponsorshipId | FAPESP: #2014/12236-1 | |
| dc.description.sponsorshipId | FAPESP: #2019/07665-4 | |
| dc.description.sponsorshipId | FAPESP: #2019/18287-0 | |
| dc.description.sponsorshipId | FAPESP: #2021/05516-1 | |
| dc.description.sponsorshipId | CNPq: 308529/2021-9 | |
| dc.format.extent | 737-745 | |
| dc.identifier | http://dx.doi.org/10.5220/0011664100003417 | |
| dc.identifier.citation | Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 4, p. 737-745. | |
| dc.identifier.doi | 10.5220/0011664100003417 | |
| dc.identifier.issn | 2184-4321 | |
| dc.identifier.issn | 2184-5921 | |
| dc.identifier.scopus | 2-s2.0-85183600389 | |
| dc.identifier.uri | https://hdl.handle.net/11449/305875 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications | |
| dc.source | Scopus | |
| dc.subject | Interpretable Learning | |
| dc.subject | NLP | |
| dc.subject | Text Summarization | |
| dc.title | Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-5327-0747[1] | |
| unesp.author.orcid | 0000-0002-6494-7514[2] | |
| unesp.author.orcid | 0000-0001-5458-3908[3] |
