Logotipo do repositório
 

Publicação:
Análise Bayesiana em estudos de comportamento agressivo de peixes

dc.contributor.advisorFreitas, Eliane Gonçalves de [UNESP]
dc.contributor.authorNoleto Filho, Eurico Mesquita
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-03-19T18:30:16Z
dc.date.available2018-03-19T18:30:16Z
dc.date.issued2018-03-06
dc.description.abstractEste trabalho tem como objetivo testar se uma abordagem Bayesiana aprimora à análise de modelos longitudinais em estudo de comportamento agressivo em peixes. Discutimos as vantagens da análise Bayesiana ao lidar com variáveis agrupadas, resultados não estatisticamente significativos e número de réplicas utilizando o Acará Bandeira (Pterophyllum scalare), como estudo de caso. Além disso, em um segundo estudo com dados de quatro espécies de ciclídeo (Pterophyllum scalare, Oreochromis niloticus, Astronotus ocellatus e Cichlasoma), verificamos os diferentes tipos de viés que combinar variáveis baseando-se em critérios energéticos, pode causar na análise de dados. Por fim, em um terceiro estudo, nós construímos uma ferramenta estatística usando o pacote Shiny para permitir que modelos Bayesianos se tornem mais acessíveis para estudos longitudinais com agressividade. O delineamento dos dois primeiros estudos foi semelhante. Para cada espécie, 15 grupos de 3 indivíduos foram submetidos a observações diárias durante 10 minutos em 5 dias. Para o primeiro estudo, as variáveis comportamentais foram analisadas parcialmente combinadas de acordo com a intensidade do comportamento (Ataques e Displays), e completamente combinadas (soma de todas variáveis). Para o segundo, as variáveis comportamentais foram analisadas individualmente e parcialmente combinadas de acordo com a intensidade do comportamento (Ataques e Displays). As freqüências de cada registro foram modeladas usando cadeias de Monte Carlo Markov. Os resultados mostram que combinar variáveis, independente do critério, pode levar à conclusões tendenciosas, pois as variáveis que estão sendo combinadas podem apresentar diferentes frequências ou padrões temporais. Além disso, essa diferença de padrão pode acontecer de forma mais clara ou mais sutil. Alterações sutis não podem ser detectadas utilizando os métodos clássicos. Os métodos Bayesianos permitem verificar a viabilidade de combinar variáveis, pois mostram de maneira exata as mudanças na probabilidade de diferença. Outrossim, fornecem uma descrição clara das mudanças mesmo quando os padrões são sutis. Os resultados também mostraram que 12 repetições, para todas as espécies, não altera as conclusões do estudo, bem como que o uso de um pequeno tamanho de amostra poderia ser mais evidente dentro dos dias sobrepostos, que inclui a estabilidade do ranking social. Por fim, a ferramenta BayesBehav é apresentada para facilitar o uso da abordagem Bayesiana em pesquisas com comportamento agressivo de peixes.pt
dc.description.abstractThis work aims to test if a Bayesian approach improves the analysis of longitudinal models in the study of aggressive behavior in fish. We discuss the advantages of Bayesian analysis when dealing with combined variables, non-statistically significant results and the number of replicates using the Acará Bandeira (Pterophyllum scalare), as a case study. In addition, in a second study with data of four species of cichlid (Pterophyllum scalare, Oreochromis niloticus, Astronotus ocellatus and Cichlasoma), we have checked in more detail the possible bias types that pooling variables based on energetic criterion, can cause in the data analysis. Finally, we have developed a statistical tool using the Shiny package to allow Bayesian models to become more accessible for aggressive longitudinal studies. We have adopted a similar experimental design for the first two studies. For each species, 15 groups of 3 subjects were submitted to daily observations for 10 minutes, in 5 days. For the first study, the behavioral variables were analyzed partially combined according to the intensity of the behavior (Attacks and Displays) and completely combined (sum of all variables). For the second, the behavioral variables were analyzed individually and partially combined according to the intensity of the behavior (Attacks and Displays). The frequencies of each record were modeled using Monte Carlo Markov chains. The results show that combining variables, regardless of the criterion, can lead to biased conclusions since the variables that are being combined have different frequencies or temporal patterns. In addition, this difference in pattern can happen more clearly or more subtly. Subtle changes cannot be detected using classical methods. Bayesian methods allow verifying the feasibility of combining variables, as they accurately show changes in the probability of difference. Also, they provide a clear description of the changes even when the temporal patterns are subtle. In addition, the results showed that twelve replicates, for all species, does not change the study's conclusions, as well as that the use of a small sample size could be more evident within the overlapping days, which includes the social rank stability. Finally, the BayesBehav tool is presented as a suitable tool to facilitate the use of the Bayesian approach in aggressive fish behavior research.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdnº 1542925
dc.identifier.aleph000898420
dc.identifier.capes33004102049P7
dc.identifier.lattes8774908691587814
dc.identifier.orcid0000-0003-1896-3035
dc.identifier.urihttp://hdl.handle.net/11449/153093
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectAnálise Bayesianapt
dc.subjectComportamento Agressivopt
dc.subjectDelineamento Longitudinalpt
dc.subjectAggressive behavioren
dc.subjectBayesian analysisen
dc.subjectLongitudinal designen
dc.titleAnálise Bayesiana em estudos de comportamento agressivo de peixespt
dc.title.alternativeBayesian analysis on fish's aggressive behavior studiesen
dc.typeTese de doutorado
dspace.entity.typePublication
unesp.advisor.lattes8774908691587814[1]
unesp.advisor.orcid0000-0003-1896-3035[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.embargo18 meses após a data da defesapt
unesp.graduateProgramAquicultura - FCAVpt
unesp.knowledgeAreaOutrapt
unesp.researchAreaComportamento de peixespt

Arquivos

Pacote Original

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
noletofilho_em_dr_jabo_par.pdf
Tamanho:
1.9 MB
Formato:
Adobe Portable Document Format
Descrição:
Carregando...
Imagem de Miniatura
Nome:
noletofilho_em_dr_jabo_int.pdf
Tamanho:
50.36 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.97 KB
Formato:
Item-specific license agreed upon to submission
Descrição: