Publication: Non-uniform drag force on the Fermi accelerator model
Loading...
Date
Advisor
Coadvisor
Graduate program
Undergraduate course
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B.V.
Type
Article
Access right
Acesso restrito
Abstract
Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.
Description
Keywords
Fermi accelerator model, Damping forces
Language
English
Citation
Physica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 391, n. 22, p. 5366-5374, 2012.