Repository logo
 

Publication:
Non-uniform drag force on the Fermi accelerator model

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Type

Article

Access right

Acesso restrito

Abstract

Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.

Description

Keywords

Fermi accelerator model, Damping forces

Language

English

Citation

Physica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 391, n. 22, p. 5366-5374, 2012.

Related itens

Units

Departments

Undergraduate courses

Graduate programs