Logotipo do repositório
 

Publicação:
Antimicrobial and biofilm anti-adhesion activities of silver nanoparticles and farnesol against endodontic microorganisms for possible application in root canal treatment

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Objective: This study aimed to evaluate the antimicrobial and biofilm anti-adhesion activities of poly(vinyl alcohol)-coated silver nanoparticles (AgNPs-PVA) and farnesol against Enterococcus faecalis, Candida albicans or Pseudomonas aeruginosa. Design: Minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) of the solutions, as well as the effect on the biofilm biomass were evaluated. The biofilm anti-adhesion activity was evaluated using bovine root dentine treated with the solutions after 3 min of contact and analyzed by scanning electron microscopy (SEM) and by colony-forming units per milliliter (CFU mL−1) counting. Data were analyzed using ANOVA and Tukey's, the paired Student's t-test or Kruskal-Wallis and Dunn's tests (α = 0.05). Results: The MIC and MMC values (MIC/MMC) of the AgNPs-PVA and farnesol against E. faecalis were 42.5/50 μM and 0.85/1.0%, respectively. For C. albicans, the values were 27.5/37.5 μM and 1.75/2.5%; and for P. aeruginosa, 32.5/32.5 μM and 2.5/2.75%, respectively. Both solutions showed reduced biofilm biomass (p < 0.05). SEM analysis showed that dentine blocks treated with both solutions had lower biofilm formation than the control (saline), except for C. albicans. In the CFU mL−1 counting, biofilm cells were viable in the all groups in comparison with control (p > 0.05). Conclusions: AgNPs-PVA and farnesol showed antimicrobial and biofilm anti-adhesion activities, as well as potential for use as coadjuvant in endodontic treatment, and may be an option as auxiliary procedure for root canal disinfection or to inhibit biofilm formation.

Descrição

Palavras-chave

Biofilm, Endodontics, Farnesol, Silver nanoparticles

Idioma

Inglês

Como citar

Archives of Oral Biology, v. 107.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação