Logotipo do repositório
 

Publicação:
An Overview on Concepts Drift Learning

dc.contributor.authorIwashita, Adriana Sayuri
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:34:26Z
dc.date.available2019-10-04T12:34:26Z
dc.date.issued2019-01-01
dc.description.abstractConcept drift techniques aim at learning patterns from data streams that may change over time. Although such behavior is not usually expected in controlled environments, real-world scenarios can face changes in the data, such as new classes, clusters, and features. Traditional classifiers can be easily fooled in such situations, resulting in poor performances. Common concept drift domains include recommendation systems, energy consumption, artificial intelligence systems with dynamic environment interaction, and biomedical signal analysis (e.g., neurogenerative diseases). In this paper, we surveyed several works that deal with concept drift, as well as we presented a comprehensive study of public synthetic and real datasets that can be used to cope with such a problem. In addition, we considered a review of different types of drifts and approaches to handling such changes in the data. We considered different learners employed in classification tasks and the use of drift detection mechanisms, among other characteristics.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCAPES: 001
dc.format.extent1532-1547
dc.identifierhttp://dx.doi.org/10.1109/ACCESS.2018.2886026
dc.identifier.citationIeee Access. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 7, p. 1532-1547, 2019.
dc.identifier.doi10.1109/ACCESS.2018.2886026
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/11449/185318
dc.identifier.wosWOS:000455864400001
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Access
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectConcept drift
dc.subjectmachine learning
dc.subjectpattern recognition
dc.titleAn Overview on Concepts Drift Learningen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.orcid0000-0002-6494-7514[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos