Logotipo do repositório
 

Publicação:
Climate Change Impacts on the South American Monsoon System and Its Surface–Atmosphere Processes Through RegCM4 CORDEX-CORE Projections

dc.contributor.authorTeodoro, Thales Alves
dc.contributor.authorReboita, Michelle Simões
dc.contributor.authorLlopart, Marta [UNESP]
dc.contributor.authorda Rocha, Rosmeri Porfírio
dc.contributor.authorAshfaq, Moetasim
dc.contributor.institutionUNIFEI
dc.contributor.institutionThe Abdus Salam International Centre for Theoretical Physics (ICTP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionOak Ridge National Laboratory
dc.date.accessioned2022-04-28T19:46:29Z
dc.date.available2022-04-28T19:46:29Z
dc.date.issued2021-01-01
dc.description.abstractThis study evaluates projected changes in surface water and energy balances and surface–atmosphere coupling in the South American Monsoon System (SAMS) for the end of the century (2080–2099). The analyses are based on two ensemble datasets, which follow Representative Concentration Pathway 8.5 in the future period, and cover four subdomains (Northern and Southern—NAMZ and SAMZ—Amazon, La Plata Basin—LPB, and Southern Southeast Brazil—SSB). One ensemble consists of three Global Climate Models (HadGEM2-ES, MPI-ESM-MR and NorESM1-M), while the other consists of their dynamically downscaled version at 25 km horizontal grid spacing using Regional Climate Model version 4 (RegCM4). As both ensembles are able in reproducing the annual cycle of the components of the surface water and energy balances in the present climate, they can be used in the study of future climate. During the wet season (November–March), both ensembles project a decrease in precipitation over NAMZ and SAMZ (an exception is RegCM4 that projects a slight increase in SAMZ), and an increase across the LPB and SSB. These changes do not cause retreat or expansion of the monsoon area over the continent, which is similar to the present climate (1995–2014). For the wet season, the ensembles are in line with the presence of a strong surface–atmosphere coupling in LPB and SSB, weak coupling in SAMZ and very weak coupling in NAMZ. For future climate, the coupling is even weaker in NAMZ, which may be a driver for the negative changes in precipitation. For the other subdomains, while the ensembles project similar signals of precipitation changes, they disagree with the surface-atmosphere coupling highlighting the uncertainties in future climate.en
dc.description.affiliationFederal University of Itajubá UNIFEI
dc.description.affiliationThe Abdus Salam International Centre for Theoretical Physics (ICTP)
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
dc.description.affiliationDepartamento de Ciências Atmosféricas Universidade de São Paulo USP
dc.description.affiliationComputational Sciences and Engineering Division Oak Ridge National Laboratory
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
dc.identifierhttp://dx.doi.org/10.1007/s41748-021-00265-y
dc.identifier.citationEarth Systems and Environment.
dc.identifier.doi10.1007/s41748-021-00265-y
dc.identifier.issn2509-9434
dc.identifier.issn2509-9426
dc.identifier.scopus2-s2.0-85117951181
dc.identifier.urihttp://hdl.handle.net/11449/222738
dc.language.isoeng
dc.relation.ispartofEarth Systems and Environment
dc.sourceScopus
dc.subjectClimate change
dc.subjectCoupling indices
dc.subjectMonsoon area
dc.subjectSAMS
dc.subjectSurface energy balance
dc.subjectSurface water balance
dc.titleClimate Change Impacts on the South American Monsoon System and Its Surface–Atmosphere Processes Through RegCM4 CORDEX-CORE Projectionsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-1734-2395[2]

Arquivos

Coleções