Massive Conscious Neighborhood-Based Crow Search Algorithm for the Pseudo-Coloring Problem
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The pseudo-coloring problem (PsCP) is a combinatorial optimization challenge that involves assigning colors to elements in a way that meets specific criteria, often related to minimizing conflicts or maximizing some form of utility. A variety of metaheuristic algorithms have been developed to solve PsCP efficiently. However, these algorithms sometimes struggle with the quality of solutions, impacting their ability to achieve optimal or near-optimal results reliably. To overcome these issues, this study introduces an adapted conscious neighborhood-based crow search algorithm (CCSA) and a massive variant of CCSA specifically tailored for PsCP. The performance of CCSA and MCCSA are evaluated on real and synthetic images and compared with state-of-the-art optimizers. The results showed that the adapted CCSA and MCCSA outperformed offering an effective strategy for image pseudo-colorization.
Descrição
Palavras-chave
Color Spaces, Crow Search Algorithm, Massive Local Search, Optimization, Pseudo-Coloring Problem
Idioma
Inglês
Citação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14788 LNCS, p. 182-196.




