Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Massive Conscious Neighborhood-Based Crow Search Algorithm for the Pseudo-Coloring Problem

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The pseudo-coloring problem (PsCP) is a combinatorial optimization challenge that involves assigning colors to elements in a way that meets specific criteria, often related to minimizing conflicts or maximizing some form of utility. A variety of metaheuristic algorithms have been developed to solve PsCP efficiently. However, these algorithms sometimes struggle with the quality of solutions, impacting their ability to achieve optimal or near-optimal results reliably. To overcome these issues, this study introduces an adapted conscious neighborhood-based crow search algorithm (CCSA) and a massive variant of CCSA specifically tailored for PsCP. The performance of CCSA and MCCSA are evaluated on real and synthetic images and compared with state-of-the-art optimizers. The results showed that the adapted CCSA and MCCSA outperformed offering an effective strategy for image pseudo-colorization.

Descrição

Palavras-chave

Color Spaces, Crow Search Algorithm, Massive Local Search, Optimization, Pseudo-Coloring Problem

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14788 LNCS, p. 182-196.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso