Logo do repositório

Massive Conscious Neighborhood-Based Crow Search Algorithm for the Pseudo-Coloring Problem

dc.contributor.authorSimplicio Viana, Monique
dc.contributor.authorContreras, Rodrigo Colnago [UNESP]
dc.contributor.authorPessoa, Paulo Cavalcanti
dc.contributor.authorBongarti, Marcelo Adriano dos Santos
dc.contributor.authorZamani, Hoda
dc.contributor.authorGuido, Rodrigo Capobianco [UNESP]
dc.contributor.authorMorandinJunior, Orides
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionWeierstrass Institute
dc.contributor.institutionIslamic Azad University
dc.date.accessioned2025-04-29T18:05:48Z
dc.date.issued2024-01-01
dc.description.abstractThe pseudo-coloring problem (PsCP) is a combinatorial optimization challenge that involves assigning colors to elements in a way that meets specific criteria, often related to minimizing conflicts or maximizing some form of utility. A variety of metaheuristic algorithms have been developed to solve PsCP efficiently. However, these algorithms sometimes struggle with the quality of solutions, impacting their ability to achieve optimal or near-optimal results reliably. To overcome these issues, this study introduces an adapted conscious neighborhood-based crow search algorithm (CCSA) and a massive variant of CCSA specifically tailored for PsCP. The performance of CCSA and MCCSA are evaluated on real and synthetic images and compared with state-of-the-art optimizers. The results showed that the adapted CCSA and MCCSA outperformed offering an effective strategy for image pseudo-colorization.en
dc.description.affiliationFederal University of São Carlos, SP
dc.description.affiliationInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), SP
dc.description.affiliationUniversity of São Paulo, SP
dc.description.affiliationWeierstrass Institute
dc.description.affiliationFaculty of Computer Engineering Islamic Azad University
dc.description.affiliationBig Data Research Center Najafabad Branch Islamic Azad University
dc.description.affiliationUnespInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), SP
dc.format.extent182-196
dc.identifierhttp://dx.doi.org/10.1007/978-981-97-7181-3_15
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14788 LNCS, p. 182-196.
dc.identifier.doi10.1007/978-981-97-7181-3_15
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85202631310
dc.identifier.urihttps://hdl.handle.net/11449/297165
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectColor Spaces
dc.subjectCrow Search Algorithm
dc.subjectMassive Local Search
dc.subjectOptimization
dc.subjectPseudo-Coloring Problem
dc.titleMassive Conscious Neighborhood-Based Crow Search Algorithm for the Pseudo-Coloring Problemen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-2960-8293[1]
unesp.author.orcid0000-0003-4003-7791 0000-0003-4003-7791[2]
unesp.author.orcid0009-0001-9630-8637[3]
unesp.author.orcid0000-0002-9027-7702[4]
unesp.author.orcid0000-0003-0444-4509 0000-0003-0444-4509[5]
unesp.author.orcid0000-0002-0924-8024[6]
unesp.author.orcid0000-0001-5588-100X[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos