The action of anodic TiO2 coating against thermal oxidation of pure titanium
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This study aims to produce a micro-arc oxidation (MAO) layer of TiO2 on commercially pure titanium (CP-Ti) and analyze the influence of heat treatment temperatures in the air to promote thermal oxidation and in a vacuum to prevent oxidation. The results showed that the MAO coating is amorphous and constituted by TiO2 as anatase and rutile. The increase in heat treatment temperature (600–1200 °C) promoted the formation of rutile, an increase in surface roughness, but decreased the contact angle and pore size. In the condition subjected to heat treatment in vacuum, there is also a decrease in the thickness of the layer due to atomic diffusion (13 → ~ 0 μm). On the other hand, the heat treatment out of vacuum oxidized the CP-Ti MAO surfaces, increasing the oxide thickness as the temperature increased (9 → 325 μm). The increased hardness of CP-Ti at the metal/oxide interface was high due to the incorporation of oxygen in solid solution, which acts as a hardening agent. The MAO coating acts as an effective protective layer of the metal substrate against thermal oxidation.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Journal of Materials Science, v. 60, n. 4, p. 1891-1904, 2025.




