Logotipo do repositório
 

Publicação:
Influence of Vibroacoustic Phenomena from FFF Process on Surface Characteristics of Printed Parts †

dc.contributor.authorLopes, Thiago Glissoi [UNESP]
dc.contributor.authorRocha, Isabela Müller Martins [UNESP]
dc.contributor.authorAguiar, Paulo Roberto [UNESP]
dc.contributor.authorFrança, Thiago Valle [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T12:42:49Z
dc.date.available2023-07-29T12:42:49Z
dc.date.issued2022-01-01
dc.description.abstractThe fused filament fabrication (FFF) process deals with the manufacturing of parts by adding fused plastic filaments in successive layers, following certain fill patterns. For fabrication to be successful, different filling parameters must be defined. Given the sequential nature of the FFF process, the fabrication of the first layer is considered one of the most critical points for fault detection. The FFF process takes place in a 3D printer, where the filling patterns are achieved by moving the extruder and/or printing table along the X, Y and Z axes. Different models of 3D printers move the axes in different ways. The optical profilometry method showed good results when analyzing different topographic characteristics, such as roughness and others related to the peaks and valleys of a printed surface, when moving only the extruder. However, given that the filament deposition occurs on the printing table, the most susceptible place for vibroacoustic phenomena during the process, the present work aims to evaluate, by means of optical profilometry, the surface characteristics of a region of a certain part manufactured by moving only the printing table. The results obtained demonstrate that the surface characteristics evaluated by optical profilometry are greatly influenced by the vibroacoustic phenomena, varying significantly from the values observed when only the extruder moves.en
dc.description.affiliationDepartment of Electrical Engineering São Paulo State University, Avenida. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationIndustrial Technical College “Prof. Isaac Portal Roldán” Universidade Estadual Paulista, Avenida. Nações Unidas, 58-50
dc.description.affiliationDepartment of Mechanical Engineering São Paulo State University, Avenida. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespDepartment of Electrical Engineering São Paulo State University, Avenida. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespIndustrial Technical College “Prof. Isaac Portal Roldán” Universidade Estadual Paulista, Avenida. Nações Unidas, 58-50
dc.description.affiliationUnespDepartment of Mechanical Engineering São Paulo State University, Avenida. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.identifierhttp://dx.doi.org/10.3390/ECP2022-12615
dc.identifier.citationEngineering Proceedings, v. 19, n. 1, 2022.
dc.identifier.doi10.3390/ECP2022-12615
dc.identifier.issn2673-4591
dc.identifier.scopus2-s2.0-85144484409
dc.identifier.urihttp://hdl.handle.net/11449/246508
dc.language.isoeng
dc.relation.ispartofEngineering Proceedings
dc.sourceScopus
dc.subjectfused filament fabrication
dc.subjectoptical profilometry
dc.subjectpart evaluation
dc.subjectsurface characteristics
dc.titleInfluence of Vibroacoustic Phenomena from FFF Process on Surface Characteristics of Printed Parts †en
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-8860-2748[1]
unesp.author.orcid0000-0003-4040-5056[4]

Arquivos

Coleções