Logotipo do repositório
 

Publicação:
Gene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is Less Stressful to the Silverside Odontesthes humensis

dc.contributor.authorSilveira, Tony L. R.
dc.contributor.authorMartins, Gabriel B.
dc.contributor.authorDomingues, William B.
dc.contributor.authorRemiao, Mariana H.
dc.contributor.authorBarreto, Bruna F.
dc.contributor.authorLessa, Ingrid M.
dc.contributor.authorSantos, Lucas
dc.contributor.authorPinhal, Danillo [UNESP]
dc.contributor.authorDellagostin, Odir A.
dc.contributor.authorSeixas, Fabiana K.
dc.contributor.authorCollares, Tiago
dc.contributor.authorRobaldo, Ricardo B.
dc.contributor.authorCampos, Vinicius F.
dc.contributor.institutionUniv Fed Pelotas
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:45:04Z
dc.date.available2018-11-26T17:45:04Z
dc.date.issued2018-02-06
dc.description.abstractSilversides are fish that inhabit marine coastal waters, coastal lagoons, and estuarine regions in southern South America. The freshwater (FW) silversides have the ability to tolerate salinity variations. Odontesthes humensis have similar habitats and biological characteristics of congeneric O. bonariensis, the most studied silverside species and with great economic importance. Studies revealed that O. bonariensis is not fully adapted to FW, despite inhabiting hyposmotic environments in nature. However, there is little information about stressful environments for cultivation of silverside O. humensis. Thus, the aim of this study was to evaluate the stress and osmoregulation responses triggered by the osmotic transfers on silverside O. humensis. Silversides were acclimated to FW (0 ppt) and to brackish water (BW, 10 ppt) and then they were exposed to opposite salinity treatment. Silverside gills and blood were sampled on pre-transfer (D0) and 1, 7, and 15 days (D1, D7, and D15) after changes in environmental salinity, the expression levels of genes atp1a3a, slc12a2b, kcnh1, and hspa1a were determined by quantitative reverse transcription-PCR for evaluation of osmoregulatory and stress responses. Furthermore, glycemia, hematocrit, and osmolality were also evaluated. The expression of atp1a3a was up-and down-regulated at D1 after the FW-BW and BW-FW transfers, respectively. Slc12a2b was up-regulated after FW-BW transfer. Similarly, kcnh1 and hspa1a were up-regulated at D1 after the BW-FW transfer. O. humensis blood osmolality decreased after the exposure to FW. It remained stable after exposure to BW, indicating an efficient hyposmoregulation. The glycemia had a peak at D1 after BW-FW transfer. No changes were observed in hematocrit. The return to the pre-transfer levels at D7 after the significant increases in responses of almost all evaluated molecular and blood parameters indicated that this period is enough for acclimation to the experimental conditions. In conclusion, our results suggest that BW-FW transfer is more stressful to O. humensis than FW-BW transfer and the physiology of O. humensis is only partially adapted to FW.en
dc.description.affiliationUniv Fed Pelotas, Technol Dev Ctr, Lab Struct Genom, Pelotas, Brazil
dc.description.affiliationUniv Fed Pelotas, Inst Biol, Lab Physiol, Pelotas, Brazil
dc.description.affiliationUniv Fed Pelotas, Technol Dev Ctr, Lab Canc Biotechnol, Pelotas, Brazil
dc.description.affiliationSao Paulo State Univ, Inst Biosci Botucatu, Dept Genet, Genom & Mol Evolut Lab, Botucatu, SP, Brazil
dc.description.affiliationUniv Fed Pelotas, Technol Dev Ctr, Lab Vaccinol, Pelotas, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Inst Biosci Botucatu, Dept Genet, Genom & Mol Evolut Lab, Botucatu, SP, Brazil
dc.description.sponsorshipMinisterio da Ciencia
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdMinisterio da Ciencia: 422292/2016-8
dc.description.sponsorshipIdCNPq: 472210/2013-0
dc.description.sponsorshipIdCAPES: AUXPE 2900/2014
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.3389/fgene.2018.00028
dc.identifier.citationFrontiers In Genetics. Lausanne: Frontiers Media Sa, v. 9, 10 p., 2018.
dc.identifier.doi10.3389/fgene.2018.00028
dc.identifier.fileWOS000424244300002.pdf
dc.identifier.issn1664-8021
dc.identifier.urihttp://hdl.handle.net/11449/163813
dc.identifier.wosWOS:000424244300002
dc.language.isoeng
dc.publisherFrontiers Media Sa
dc.relation.ispartofFrontiers In Genetics
dc.relation.ispartofsjr2,274
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectacclimation
dc.subjectblood
dc.subjectbrackish water
dc.subjectfish
dc.subjectfreshwater
dc.subjectgenes
dc.subjectsalt
dc.subjecttransfer
dc.titleGene and Blood Analysis Reveal That Transfer from Brackish Water to Freshwater Is Less Stressful to the Silverside Odontesthes humensisen
dc.typeArtigo
dcterms.rightsHolderFrontiers Media Sa
dspace.entity.typePublication
unesp.author.orcid0000-0003-1075-0182[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentGenética - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000424244300002.pdf
Tamanho:
1 MB
Formato:
Adobe Portable Document Format
Descrição: