Publicação: Bayesian inference and diagnostics in zero-inflated generalized power series regression model
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Taylor & Francis Inc
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
The paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California.
Descrição
Palavras-chave
Bayesian analysis, Count data, Divergence measures, Generalized power series model, Parameter estimation, Regression model, Zero-inflated model
Idioma
Inglês
Como citar
Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016.