Maximizing surface reactivity: The impact of electrochemical oxidation as a polydopamine modification step
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Melanin-based materials are highly versatile and widely utilized across various industries, thanks to their customizable surface properties and excellent biocompatibility. Dopamine, a well-studied precursor, has the remarkable ability to self-oxidize and form melanin-like compounds. This molecule can be tailored using cations during the oxidation process or via the chelation of hydroxyl groups in the final material. In order to explore the adaptability of dopamine-based melanin materials, our research focuses on producing particles using an innovative double-step process. The first oxidation is catalyzed by Y3+ in an electrochemical process, followed by further cyclization in a basic medium. We examined the resulting products to gauge the impact of the process on the final molecular arrangement and chelation capacity by utilizing Fe2+ as a cation probe. Surface reactivity was assessed using voltammetry techniques and electrochemical impedance spectroscopy. The results clearly indicate significant improvements in the molecular arrangement, demonstrating that the double-step process delivers higher material stability and superior surface reactivity compared to the conventional alkali self-oxidation method.
Descrição
Palavras-chave
Dopamine, Electrochemical oxidation, Molecular arrangement, Surface reactivity
Idioma
Inglês
Citação
Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 706.





