Logotipo do repositório
 

Publicação:
Validation of white oat yield estimation models using vegetation indices

dc.contributor.authorCoelho, Anderson Prates [UNESP]
dc.contributor.authorFaria, Rogerio Teixeira de [UNESP]
dc.contributor.authorLeal, Fabio Tiraboschi [UNESP]
dc.contributor.authorBarbosa, Jose de Arruda [UNESP]
dc.contributor.authorRosalen, David Luciano [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T20:01:24Z
dc.date.available2020-12-10T20:01:24Z
dc.date.issued2020-04-01
dc.description.abstractThe use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI.en
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Engn Rural, Jaboticabal, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Ciencias Prod Agr, Jaboticabal, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Engn Rural, Jaboticabal, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Ciencias Prod Agr, Jaboticabal, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent236-241
dc.identifierhttp://dx.doi.org/10.1590/1678-4499.20190387
dc.identifier.citationBragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020.
dc.identifier.doi10.1590/1678-4499.20190387
dc.identifier.fileS0006-87052020000200236.pdf
dc.identifier.issn0006-8705
dc.identifier.scieloS0006-87052020000200236
dc.identifier.urihttp://hdl.handle.net/11449/196949
dc.identifier.wosWOS:000538148300007
dc.language.isoeng
dc.publisherInst Agronomico
dc.relation.ispartofBragantia
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectAvena sativa L.
dc.subjectIRVI
dc.subjectmodeling
dc.subjectNDVI
dc.subjectremote sensing
dc.titleValidation of white oat yield estimation models using vegetation indicesen
dc.typeArtigo
dcterms.rightsHolderInst Agronomico
dspace.entity.typePublication
unesp.author.orcid0000-0003-2472-9704[1]
unesp.departmentEngenharia Rural - FCAVpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0006-87052020000200236.pdf
Tamanho:
147.51 KB
Formato:
Adobe Portable Document Format