Repository logo
 

Publication:
First-order swap structures semantics for some logics of formal inconsistency

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford Univ Press

Type

Article

Access right

Abstract

The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered.

Description

Keywords

First-order logics, logics of formal inconsistency, paraconsistent logics, swap structures, non-deterministic matrices, twist structures

Language

English

Citation

Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020.

Related itens

Units

Departments

Undergraduate courses

Graduate programs