Publicação:
Selecting candidate labels for hierarchical document clusters using association rules

dc.contributor.authorDos Santos, Fabiano Fernandes
dc.contributor.authorDe Carvalho, Veronica Oliveira [UNESP]
dc.contributor.authorOliveira Rezende, Solange
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:25:26Z
dc.date.available2014-05-27T11:25:26Z
dc.date.issued2010-12-16
dc.description.abstractOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.en
dc.description.affiliationInstituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP)
dc.description.affiliationInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual Paulista
dc.format.extent163-176
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-16773-7_14
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.
dc.identifier.doi10.1007/978-3-642-16773-7_14
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-78649991980
dc.identifier.urihttp://hdl.handle.net/11449/72231
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectassociation rules
dc.subjectlabel hierarchical clustering
dc.subjecttext mining
dc.subjectClassical methods
dc.subjectHierarchical document
dc.subjectPrecision and recall
dc.subjectSearch and retrieval
dc.subjectStructural representation
dc.subjectText mining
dc.subjectArtificial intelligence
dc.subjectKnowledge representation
dc.subjectSoft computing
dc.subjectAssociation rules
dc.titleSelecting candidate labels for hierarchical document clusters using association rulesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dspace.entity.typePublication

Arquivos

Coleções