Atenção!


Informamos que o Repositório Institucional passará por atualização no dia 15/01/2026 e ficará fora do ar entre 10:00 e 14:00 horas.

Pedimos a sua compreensão

Logo do repositório

Algorithm recommendation for data streams

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

In the last decades, many companies have taken advantage of knowledge discovery to identify valuable information in massive volumes of data generated at high frequency. Machine learning techniques can be employed for knowledge discovery since they can extract patterns from data and induce models to predict future events. However, dynamic and evolving environments usually generate non-stationary data streams. Hence, models trained in these scenarios may perish over time due to seasonality or concept drift. Periodic retraining can help, but a fixed hypothesis space may no longer be appropriate. An alternative solution is to use meta-learning for regular algorithm selection in time-changing environments, choosing the bias that best suits the current data. In this paper, we present an enhanced framework for data stream algorithm selection based on MetaStream. Our approach uses meta-learning and incremental learning to actively select the best algorithm for the current concept in a time-changing environment. Different from previous work, we use a rich set of state-of-the-art meta-features, and an incremental learning approach in the meta-level based on LightGBM. The results show that this new strategy can improve the recommendation accuracy of the best algorithm in time-changing data.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Proceedings - International Conference on Pattern Recognition, p. 6073-6080.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso