Publicação: On the existence of infinite heteroclinic cycles in polynomial systems and its dynamic consequences
Nenhuma Miniatura disponível
Data
2004-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Wiley-Blackwell
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
In this work we consider the dynamic consequences of the existence of infinite heteroclinic cycle in planar polynomial vector fields, which is a trajectory connecting two saddle points at infinity. It is stated that, although the saddles which form the cycle belong to infinity, for certain types of nonautonomous perturbations the perturbed system may present a complex dynamic behavior of the solutions in a finite part of the phase plane, due to the existence of tangencies and transversal intersections of their stable and unstable manifolds. This phenomenon might be called the chaos arising from infinity. The global study at infinity is made via the Poincare Compactification and the argument used to prove the statement is the Birkhoff-Smale Theorem. (c) 2004 WILEY-NCH Verlag GmbH & Co. KGaA, Weinheim.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Icnaam 2004: International Conference on Numerical Analysis and Applied Mathematics 2004. Weinheim: Wiley-v C H Verlag Gmbh, p. 261-264, 2004.