Publicação: SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously
dc.contributor.author | Aragao, Dunfrey | |
dc.contributor.author | Nascimento, Tiago | |
dc.contributor.author | Mondini, Adriano [UNESP] | |
dc.contributor.institution | Universidade Federal da Paraíba (UFPB) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-28T19:29:14Z | |
dc.date.available | 2022-04-28T19:29:14Z | |
dc.date.issued | 2020-07-01 | |
dc.description.abstract | One of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and up-sampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet. | en |
dc.description.affiliation | Universidade Federal da Paraíba | |
dc.description.affiliation | Universidade Estadual Paulista 'Júlio de Mesquita Filho' | |
dc.description.affiliationUnesp | Universidade Estadual Paulista 'Júlio de Mesquita Filho' | |
dc.format.extent | 217-222 | |
dc.identifier | http://dx.doi.org/10.1109/IWSSIP48289.2020.9145427 | |
dc.identifier.citation | International Conference on Systems, Signals, and Image Processing, v. 2020-July, p. 217-222. | |
dc.identifier.doi | 10.1109/IWSSIP48289.2020.9145427 | |
dc.identifier.issn | 2157-8702 | |
dc.identifier.issn | 2157-8672 | |
dc.identifier.scopus | 2-s2.0-85089136198 | |
dc.identifier.uri | http://hdl.handle.net/11449/221528 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Conference on Systems, Signals, and Image Processing | |
dc.source | Scopus | |
dc.subject | Dataset | |
dc.subject | depth-scene | |
dc.subject | pose | |
dc.subject | regression | |
dc.subject | robot | |
dc.title | SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication |