Logotipo do repositório
 

Publicação:
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously

dc.contributor.authorAragao, Dunfrey
dc.contributor.authorNascimento, Tiago
dc.contributor.authorMondini, Adriano [UNESP]
dc.contributor.institutionUniversidade Federal da Paraíba (UFPB)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:29:14Z
dc.date.available2022-04-28T19:29:14Z
dc.date.issued2020-07-01
dc.description.abstractOne of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and up-sampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet.en
dc.description.affiliationUniversidade Federal da Paraíba
dc.description.affiliationUniversidade Estadual Paulista 'Júlio de Mesquita Filho'
dc.description.affiliationUnespUniversidade Estadual Paulista 'Júlio de Mesquita Filho'
dc.format.extent217-222
dc.identifierhttp://dx.doi.org/10.1109/IWSSIP48289.2020.9145427
dc.identifier.citationInternational Conference on Systems, Signals, and Image Processing, v. 2020-July, p. 217-222.
dc.identifier.doi10.1109/IWSSIP48289.2020.9145427
dc.identifier.issn2157-8702
dc.identifier.issn2157-8672
dc.identifier.scopus2-s2.0-85089136198
dc.identifier.urihttp://hdl.handle.net/11449/221528
dc.language.isoeng
dc.relation.ispartofInternational Conference on Systems, Signals, and Image Processing
dc.sourceScopus
dc.subjectDataset
dc.subjectdepth-scene
dc.subjectpose
dc.subjectregression
dc.subjectrobot
dc.titleSpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneouslyen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções