Logo do repositório

Deep learning for video-based automated pain recognition in rabbits

dc.contributor.authorFeighelstein, Marcelo
dc.contributor.authorEhrlich, Yamit
dc.contributor.authorNaftaly, Li
dc.contributor.authorAlpin, Miriam
dc.contributor.authorNadir, Shenhav
dc.contributor.authorShimshoni, Ilan
dc.contributor.authorPinho, Renata H.
dc.contributor.authorLuna, Stelio P. L. [UNESP]
dc.contributor.authorZamansky, Anna
dc.contributor.institutionUniversity of Haifa
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionIsrael Institute of Technology
dc.contributor.institutionUniversity of Calgary
dc.date.accessioned2025-04-29T19:29:08Z
dc.date.issued2023-12-01
dc.description.abstractDespite the wide range of uses of rabbits (Oryctolagus cuniculus) as experimental models for pain, as well as their increasing popularity as pets, pain assessment in rabbits is understudied. This study is the first to address automated detection of acute postoperative pain in rabbits. Using a dataset of video footage of n = 28 rabbits before (no pain) and after surgery (pain), we present an AI model for pain recognition using both the facial area and the body posture and reaching accuracy of above 87%. We apply a combination of 1 sec interval sampling with the Grayscale Short-Term stacking (GrayST) to incorporate temporal information for video classification at frame level and a frame selection technique to better exploit the availability of video data.en
dc.description.affiliationInformation Systems Department University of Haifa
dc.description.affiliationSchool of Veterinary Medicine and Animal Science São Paulo State University (UNESP)
dc.description.affiliationFaculty of Electrical Engineering Technion Israel Institute of Technology
dc.description.affiliationFaculty of Veterinary Medicine University of Calgary
dc.description.affiliationUnespSchool of Veterinary Medicine and Animal Science São Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1038/s41598-023-41774-2
dc.identifier.citationScientific Reports, v. 13, n. 1, 2023.
dc.identifier.doi10.1038/s41598-023-41774-2
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-85169998381
dc.identifier.urihttps://hdl.handle.net/11449/303250
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.sourceScopus
dc.titleDeep learning for video-based automated pain recognition in rabbitsen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication9ca5a87b-0c83-43fa-b290-6f8a4202bf99
relation.isOrgUnitOfPublication.latestForDiscovery9ca5a87b-0c83-43fa-b290-6f8a4202bf99
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatupt

Arquivos