Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

How far you can get using machine learning black-boxes

dc.contributor.authorRocha, Anderson
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorMeira, Luis A. A.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T22:25:17Z
dc.date.available2022-04-28T22:25:17Z
dc.date.issued2010-12-01
dc.description.abstractSupervised Learning (SL) is a machine learning research area which aims at developing techniques able to take advantage from labeled training samples to make decisions over unseen examples. Recently, a lot of tools have been presented in order to perform machine learning in a more straightforward and transparent manner. However, one problem that is increasingly present in most of the SL problems being solved is that, sometimes, researchers do not completely understand what supervised learning is and, more often than not, publish results using machine learning black-boxes. In this paper, we shed light over the use of machine learning black-boxes and show researchers how far they can get using these out-of-the-box solutions instead of going deeper into the machinery of the classifiers. Here, we focus on one aspect of classifiers namely the way they compare examples in the feature space and show how a simple knowledge about the classifier's machinery can lift the results way beyond out-of-the-box machine learning solutions. © 2010 IEEE.en
dc.description.affiliationInstitute of Computing Univ. of Campinas (UNICAMP), Campinas
dc.description.affiliationDepartment of Computer Science State Univ. of São Paulo (UNESP), Bauru
dc.description.affiliationDepartment of Science and Technology Federal Univ. of São Paulo (UNIFESP) São José Dos Campos
dc.description.affiliationUnespDepartment of Computer Science State Univ. of São Paulo (UNESP), Bauru
dc.format.extent193-200
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2010.34
dc.identifier.citationProceedings - 23rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2010, p. 193-200.
dc.identifier.doi10.1109/SIBGRAPI.2010.34
dc.identifier.scopus2-s2.0-79952852833
dc.identifier.urihttp://hdl.handle.net/11449/226275
dc.language.isoeng
dc.relation.ispartofProceedings - 23rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2010
dc.sourceScopus
dc.subjectK-Nearest neighbors
dc.subjectMachine learning black-boxes
dc.subjectMetrics space
dc.subjectNeural networks
dc.subjectOptimum-Path forest
dc.subjectPattern analysis
dc.subjectSupport vector machines
dc.titleHow far you can get using machine learning black-boxesen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos