Publicação: Electrical consumers data clustering through optimum-path forest
dc.contributor.author | Ramos, Caio C. O. | |
dc.contributor.author | Souza, André N. | |
dc.contributor.author | Nakamura, Rodrigo Y. M. [UNESP] | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:26:20Z | |
dc.date.available | 2014-05-27T11:26:20Z | |
dc.date.issued | 2011-12-21 | |
dc.description.abstract | Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE. | en |
dc.description.affiliation | Department of Electrical Engineering University of São Paulo, São Paulo, São Paulo | |
dc.description.affiliation | Department of Computing UNESP - Univ. Estadual Paulista, Bauru, São Paulo | |
dc.description.affiliationUnesp | Department of Computing UNESP - Univ. Estadual Paulista, Bauru, São Paulo | |
dc.identifier | http://dx.doi.org/10.1109/ISAP.2011.6082217 | |
dc.identifier.citation | 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011. | |
dc.identifier.doi | 10.1109/ISAP.2011.6082217 | |
dc.identifier.lattes | 9039182932747194 | |
dc.identifier.scopus | 2-s2.0-83655211673 | |
dc.identifier.uri | http://hdl.handle.net/11449/73077 | |
dc.language.iso | eng | |
dc.relation.ispartof | 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Clustering | |
dc.subject | Non-technical Losses | |
dc.subject | Optimum-Path Forest | |
dc.subject | Pattern Recognition | |
dc.subject | Clustering techniques | |
dc.subject | Data clustering | |
dc.subject | Data sets | |
dc.subject | Electric power company | |
dc.subject | Non-technical loss | |
dc.subject | Specific profile | |
dc.subject | Clustering algorithms | |
dc.subject | Crime | |
dc.subject | Data processing | |
dc.subject | Electric utilities | |
dc.subject | Industry | |
dc.subject | Intelligent systems | |
dc.subject | Pattern recognition | |
dc.subject | Power transmission | |
dc.subject | Forestry | |
dc.subject | Algorithms | |
dc.subject | Artificial Intelligence | |
dc.subject | Data Processing | |
dc.subject | Electric Power Transmission | |
dc.subject | Electricity | |
dc.subject | Losses | |
dc.title | Electrical consumers data clustering through optimum-path forest | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dspace.entity.type | Publication | |
unesp.author.lattes | 9039182932747194 | |
unesp.author.lattes | 8212775960494686[2] | |
unesp.author.orcid | 0000-0002-8617-5404[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |