Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration
dc.contributor.author | Livorati, André L. P. | |
dc.contributor.author | Kroetz, Tiago | |
dc.contributor.author | Dettmann, Carl P. [UNESP] | |
dc.contributor.author | Caldas, Iberê Luiz | |
dc.contributor.author | Leonel, Edson D. [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | UTFPR Campus Pato Branco | |
dc.contributor.institution | University of Bristol | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | ICTP | |
dc.date.accessioned | 2022-04-29T04:35:28Z | |
dc.date.available | 2022-04-29T04:35:28Z | |
dc.date.issued | 2012-09-06 | |
dc.description.abstract | Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter ε and experiences a transition from integrable (ε=0) to nonintegrable (ε0). For small values of ε, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter ε increases and reaches a critical value ε c, all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large ε, the survival probability decays exponentially when it turns into a slower decay as the control parameter ε is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity. © 2012 American Physical Society. | en |
dc.description.affiliation | Instituto de Física IFUSP Universidade de São Paulo, USP Rua do Matão, Tr. R 187, 05314-970, São Paulo, SP | |
dc.description.affiliation | Departamento de Física Universidade Tecnológica Federal Do Paraná UTFPR Campus Pato Branco, 85503-390, Pato Branco, PR | |
dc.description.affiliation | School of Mathematics University of Bristol, Bristol BS8 1TW | |
dc.description.affiliation | Departamento de Estatística Matemática Aplicada e Computação UNESP Univ Estadual Paulista, Av. 24A, 1515 Bela Vista, 13506-900, Rio Claro, SP | |
dc.description.affiliation | Abdus Salam ICTP, 34151 Trieste | |
dc.description.affiliationUnesp | Departamento de Estatística Matemática Aplicada e Computação UNESP Univ Estadual Paulista, Av. 24A, 1515 Bela Vista, 13506-900, Rio Claro, SP | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevE.86.036203 | |
dc.identifier.citation | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 86, n. 3, 2012. | |
dc.identifier.doi | 10.1103/PhysRevE.86.036203 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.issn | 1550-2376 | |
dc.identifier.scopus | 2-s2.0-84866361316 | |
dc.identifier.uri | http://hdl.handle.net/11449/226969 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | |
dc.source | Scopus | |
dc.title | Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |