Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Bayesian data-driven framework for structural health monitoring of composite structures under limited experimental data

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Ultrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.

Descrição

Palavras-chave

Bayesian calibration, composite materials, convolutional neural networks, machine learning, Structural health monitoring

Idioma

Inglês

Citação

Structural Health Monitoring.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso