Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Bayesian data-driven framework for structural health monitoring of composite structures under limited experimental data

dc.contributor.authorFerreira, Leonardo de Paula S.
dc.contributor.authorTeloli, Rafael de O.
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorFigueiredo, Eloi
dc.contributor.authorMaia, Nuno
dc.contributor.authorCimini, Carlos A.
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUBFC - Université de Bourgogne Franche-Comté
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionLusófona University
dc.contributor.institutionUniversidade de Lisboa
dc.contributor.institutionUniversity of Lisbon
dc.date.accessioned2025-04-29T18:05:28Z
dc.date.issued2024-01-01
dc.description.abstractUltrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.en
dc.description.affiliationUFMG – Universidade Federal de Minas Gerais Faculdade de Engenharia Departamento de Engenharia de Estruturas, MG
dc.description.affiliationSupmicrotech-ENSMM CNRS FEMTO-ST Département Mécanique Appliquée UBFC - Université de Bourgogne Franche-Comté
dc.description.affiliationUNESP – Universidade Estadual Paulista Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica
dc.description.affiliationFaculty of Engineering Lusófona University
dc.description.affiliationCERIS Instituto Superior Técnico Universidade de Lisboa
dc.description.affiliationIDMEC Instituto Superior Técnico University of Lisbon
dc.description.affiliationUnespUNESP – Universidade Estadual Paulista Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica
dc.identifierhttp://dx.doi.org/10.1177/14759217241236801
dc.identifier.citationStructural Health Monitoring.
dc.identifier.doi10.1177/14759217241236801
dc.identifier.issn1741-3168
dc.identifier.issn1475-9217
dc.identifier.scopus2-s2.0-85191264944
dc.identifier.urihttps://hdl.handle.net/11449/297045
dc.language.isoeng
dc.relation.ispartofStructural Health Monitoring
dc.sourceScopus
dc.subjectBayesian calibration
dc.subjectcomposite materials
dc.subjectconvolutional neural networks
dc.subjectmachine learning
dc.subjectStructural health monitoring
dc.titleBayesian data-driven framework for structural health monitoring of composite structures under limited experimental dataen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-4963-8801[1]
unesp.author.orcid0000-0001-6430-3746[3]
unesp.author.orcid0000-0002-9168-6903[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos