New lower bound for the Hilbert number in low degree Kolmogorov systems
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Our main goal in this paper is to study the number of small-amplitude isolated periodic orbits, so-called limit cycles, surrounding only one equilibrium point a class of polynomial Kolmogorov systems. We denote by MK(n) the maximum number of limit cycles bifurcating from the equilibrium point via a degenerate Hopf bifurcation for a polynomial Kolmogorov vector field of degree n. In this work, we obtain another example such that MK(3)≥6. In addition, we obtain new lower bounds for MK(n) proving that MK(4)≥13 and MK(5)≥22.
Descrição
Palavras-chave
Center-focus, Cyclicity, Kolmogorov systems, Limit cycles, Lotka–Volterra systems, Lyapunov quantities, Weak-focus order
Idioma
Inglês
Citação
Chaos, Solitons and Fractals, v. 175.




