Logo do repositório

Predicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approach

dc.contributor.authorde Aguiar, Diego A. [UNESP]
dc.contributor.authorFrança, Hugo L.
dc.contributor.authorOishi, Cassio M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Amsterdam
dc.date.accessioned2025-04-29T19:28:53Z
dc.date.issued2025-05-01
dc.description.abstractThe application of neural network-based modeling presents an efficient approach for exploring complex fluid dynamics, including droplet flow. In this study, we employ Long Short-Term Memory (LSTM) neural networks to predict energy budgets in droplet dynamics under surface tension effects. Two scenarios are explored: Droplets of various initial shapes impacting on a solid surface and collision of droplets. Using dimensionless numbers and droplet diameter time series data from numerical simulations, LSTM accurately predicts kinetic, dissipative, and surface energy trends at various Reynolds and Weber numbers. Numerical simulations are conducted through an in-house front-tracking code integrated with a finite-difference framework, enhanced by a particle extraction technique for interface acquisition from experimental images. Moreover, a two-stage sequential neural network is introduced to predict energy metrics and subsequently estimate static parameters such as Reynolds and Weber numbers. Although validated primarily on simulation data, the methodology demonstrates the potential for extension to experimental datasets. This approach offers valuable insights for applications such as inkjet printing, combustion engines, and other systems where energy budgets and dissipation rates are important. The study also highlights the importance of machine learning strategies for advancing the analysis of droplet dynamics in combination with numerical and/or experimental data.en
dc.description.affiliationDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.affiliationVan der Waals-Zeeman Institute Institute of Physics University of Amsterdam
dc.description.affiliationUnespDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent854-873
dc.identifierhttp://dx.doi.org/10.1002/fld.5381
dc.identifier.citationInternational Journal for Numerical Methods in Fluids, v. 97, n. 5, p. 854-873, 2025.
dc.identifier.doi10.1002/fld.5381
dc.identifier.issn1097-0363
dc.identifier.issn0271-2091
dc.identifier.scopus2-s2.0-105002134786
dc.identifier.urihttps://hdl.handle.net/11449/303185
dc.language.isoeng
dc.relation.ispartofInternational Journal for Numerical Methods in Fluids
dc.sourceScopus
dc.subjectdroplets
dc.subjectenergy budget
dc.subjectLSTM
dc.subjectnumerical solution
dc.subjectprediction
dc.subjectsurface tension
dc.titlePredicting Energy Budgets in Droplet Dynamics: A Recurrent Neural Network Approachen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbbcf06b3-c5f9-4a27-ac03-b690202a3b4e
relation.isOrgUnitOfPublication.latestForDiscoverybbcf06b3-c5f9-4a27-ac03-b690202a3b4e
unesp.author.orcid0000-0001-5159-867X[1]
unesp.author.orcid0000-0002-5361-7704[2]
unesp.author.orcid0000-0002-0904-6561[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos