Logo do repositório

Computational simulations of ZnO@GaN and GaN@ZnO core@shell nanotubes

dc.contributor.authorMarana, N. L. [UNESP]
dc.contributor.authorCasassa, S.
dc.contributor.authorLongo, E.
dc.contributor.authorSambrano, J. R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionTorino University
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-12-11T16:54:43Z
dc.date.available2018-12-11T16:54:43Z
dc.date.issued2018-10-01
dc.description.abstractThe structural, electronic, and mechanical properties of armchair and zigzag chiralities double-walled and core@shell ZnO@GaN and GaN@ZnO nanotubes were investigated by periodic DFT/B3LYP calculations with an all-electron basis set. For both chiralities, GaN@ZnO presents minor strain and deposition energies, which predict that this nanotube can be easier formed and the GaN is the most favorable substrate (the core) than ZnO. On the other hand, the zigzag GaN@ZnO did not exhibit the major piezoelectric response, which is three times smaller than the ZnO@GaN nanotube, showing that the compression of the core@shell nanotube length is not favorable to this property. However, the piezoelectricity can be improved when the zigzag GaN@ZnO is under elongation. The elastic constants showed that the core@shell nanotubes are more rigid than the homogenous nanotubes and present higher piezoelectric constants. In addition, the projected DOS shows that GaN@ZnO has a type-II interface and ZnO@GaN has a type-I interface. Based on the results obtained from our theoretical models, the nanotubes have great potential for the experimental development of new electronic devices.en
dc.description.affiliationModeling and Molecular Simulations Group CDMF São Paulo State University UNESP
dc.description.affiliationTheoretical Group of Chemistry Chemistry Department Torino University
dc.description.affiliationChemistry Institute – CDMF Federal University of São Carlos
dc.description.affiliationUnespModeling and Molecular Simulations Group CDMF São Paulo State University UNESP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2013/07296-2
dc.description.sponsorshipIdFAPESP: 2016/07476-9
dc.description.sponsorshipIdFAPESP: 2016/25500-4
dc.format.extent217-225
dc.identifierhttp://dx.doi.org/10.1016/j.jssc.2018.07.023
dc.identifier.citationJournal of Solid State Chemistry, v. 266, p. 217-225.
dc.identifier.doi10.1016/j.jssc.2018.07.023
dc.identifier.issn1095-726X
dc.identifier.issn0022-4596
dc.identifier.scopus2-s2.0-85050665461
dc.identifier.urihttp://hdl.handle.net/11449/171280
dc.language.isoeng
dc.relation.ispartofJournal of Solid State Chemistry
dc.relation.ispartofsjr0,632
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectCore@shell
dc.subjectDouble-walled
dc.subjectInterface
dc.subjectNanotube
dc.titleComputational simulations of ZnO@GaN and GaN@ZnO core@shell nanotubesen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções