Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

3D concurrent multiscale model for crack propagation in concrete

dc.contributor.authorRodrigues, Eduardo A. [UNESP]
dc.contributor.authorManzoli, Osvaldo L. [UNESP]
dc.contributor.authorBitencourt, Luís A.G.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2020-12-12T01:10:24Z
dc.date.available2020-12-12T01:10:24Z
dc.date.issued2020-04-01
dc.description.abstractA new approach for concurrent multiscale modeling of three-dimensional crack propagation in concrete is proposed. A macroscopic model with homogenized elastic parameters is adopted in the regions where the material behaves elastically. For regions where cracks are expected to occur, a mesoscopic model based on a mesh fragmentation technique is used to represent the concrete as a heterogeneous three-phase material composed of mortar matrix, coarse aggregates and interfacial transition zone. In this technique, standard finite elements with high aspect ratio are inserted in between all regular finite elements of the mortar matrix and in between the mortar matrix and aggregate elements in order to describe the crack initiation and propagation process by using an appropriate tensile damage constitutive model. Coarse aggregates with regular shapes are generated from a grading curve and placed into the mortar matrix randomly, using the “take-and-place” method. Coupling finite elements are used for connecting the non-matching meshes corresponding to the macro and mesoscale regions, without increasing the total number of degrees of freedom of the problem. Realistic predictions of crack formation and propagation were obtained for different tests, replicating accurately the observed experimental patterns.en
dc.description.affiliationSão Paulo State University - UNESP, Av. Eng. Luiz Edmundo C. Coube 14-01 - CEP - 17033-360 Bauru - SP
dc.description.affiliationUniversity of São Paulo - USP Department of Structural and Geotechnical Engineering, Av. Prof. Luciano Gualberto, Trav. do Biênio n. 380 - CEP - 05508-010 São Paulo - SP
dc.description.affiliationUnespSão Paulo State University - UNESP, Av. Eng. Luiz Edmundo C. Coube 14-01 - CEP - 17033-360 Bauru - SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.identifierhttp://dx.doi.org/10.1016/j.cma.2019.112813
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering, v. 361.
dc.identifier.doi10.1016/j.cma.2019.112813
dc.identifier.issn0045-7825
dc.identifier.scopus2-s2.0-85077310273
dc.identifier.urihttp://hdl.handle.net/11449/198349
dc.language.isoeng
dc.relation.ispartofComputer Methods in Applied Mechanics and Engineering
dc.sourceScopus
dc.subject3D multiscale analysis
dc.subjectConcrete crack propagation
dc.subjectConcurrent model
dc.subjectCoupling finite element
dc.subjectMesh fragmentation technique
dc.subjectSolid finite element
dc.title3D concurrent multiscale model for crack propagation in concreteen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções