Publicação: Break-up of invariant curves in the Fermi-Ulam model
dc.contributor.author | Hermes, Joelson D.V. [UNESP] | |
dc.contributor.author | dos Reis, Marcelo A. | |
dc.contributor.author | Caldas, Iberê L. | |
dc.contributor.author | Leonel, Edson D. [UNESP] | |
dc.contributor.institution | Science and Technology of South of Minas Gerais - IFSULDEMINAS | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Campinas | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2023-03-01T21:00:52Z | |
dc.date.available | 2023-03-01T21:00:52Z | |
dc.date.issued | 2022-09-01 | |
dc.description.abstract | The transport of particles in the phase space is investigated in the Fermi-Ulam model. The system consists of a particle confined to move within two rigid walls with which it collides. One is fixed and the other is periodically moving in time. In this work we investigate, for this model, the location of invariant curves that separate chaotic areas in the phase space. Applying the Slater's theorem we verify that the mapping presents a family of invariant spanning curves with a rotation number whose expansion into continued fractions has an infinite tail of the unity, acting as local transport barriers. We study the destruction of such curves and find the critical parameters for that. The determination of the rotation number in the vicinity of one of the considered spanning curves allowed us to understand the dynamics in the vicinity of the considered curve, both before and after criticality. The rotation number profile showed us the fractal character of the region close to the curve, since this profile has a structure similar to a “Devil's Staircase”. | en |
dc.description.affiliation | Federal Institute of Education Science and Technology of South of Minas Gerais - IFSULDEMINAS | |
dc.description.affiliation | Departamento de Física Universidade Estadual Paulista (UNESP), Campus Rio Claro, Av. 24A, 1515, SP | |
dc.description.affiliation | Escola Preparatória de Cadetes do Exército - EsPCEx Campinas, SP | |
dc.description.affiliation | Physics Institute University of São Paulo, São Paulo | |
dc.description.affiliationUnesp | Departamento de Física Universidade Estadual Paulista (UNESP), Campus Rio Claro, Av. 24A, 1515, SP | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2018-03211-6 | |
dc.description.sponsorshipId | CNPq: 302665-2017-0 | |
dc.description.sponsorshipId | CNPq: 407299-2018-1 | |
dc.identifier | http://dx.doi.org/10.1016/j.chaos.2022.112410 | |
dc.identifier.citation | Chaos, Solitons and Fractals, v. 162. | |
dc.identifier.doi | 10.1016/j.chaos.2022.112410 | |
dc.identifier.issn | 0960-0779 | |
dc.identifier.scopus | 2-s2.0-85134748064 | |
dc.identifier.uri | http://hdl.handle.net/11449/241404 | |
dc.language.iso | eng | |
dc.relation.ispartof | Chaos, Solitons and Fractals | |
dc.source | Scopus | |
dc.subject | Chaos | |
dc.subject | Hamiltonian systems | |
dc.subject | Mappings | |
dc.subject | Nonlinear dynamics | |
dc.title | Break-up of invariant curves in the Fermi-Ulam model | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Física - IGCE | pt |