HUMAP: Hierarchical Uniform Manifold Approximation and Projection
| dc.contributor.author | Marcilio-Jr, Wilson E. [UNESP] | |
| dc.contributor.author | Eler, Danilo M. [UNESP] | |
| dc.contributor.author | Paulovich, Fernando V. | |
| dc.contributor.author | Martins, Rafael M. | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Eindhoven University of Technology (TU/e) | |
| dc.contributor.institution | Linnaeus University | |
| dc.date.accessioned | 2025-04-29T20:02:53Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | Dimensionality reduction (DR) techniques help analysts to understand patterns in high-dimensional spaces. These techniques, often represented by scatter plots, are employed in diverse science domains and facilitate similarity analysis among clusters and data samples. For datasets containing many granularities or when analysis follows the information visualization mantra, hierarchical DR techniques are the most suitable approach since they present major structures beforehand and details on demand. This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures and preserve the mental map throughout hierarchical exploration. We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling. | en |
| dc.description.affiliation | São Paulo State University | |
| dc.description.affiliation | Eindhoven University of Technology (TU/e) | |
| dc.description.affiliation | Linnaeus University | |
| dc.description.affiliationUnesp | São Paulo State University | |
| dc.identifier | http://dx.doi.org/10.1109/TVCG.2024.3471181 | |
| dc.identifier.citation | IEEE Transactions on Visualization and Computer Graphics. | |
| dc.identifier.doi | 10.1109/TVCG.2024.3471181 | |
| dc.identifier.issn | 1941-0506 | |
| dc.identifier.issn | 1077-2626 | |
| dc.identifier.scopus | 2-s2.0-85205939462 | |
| dc.identifier.uri | https://hdl.handle.net/11449/305357 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | IEEE Transactions on Visualization and Computer Graphics | |
| dc.source | Scopus | |
| dc.subject | Dimensionality Reduction | |
| dc.subject | Hierarchical Exploration | |
| dc.subject | Manifold Learning | |
| dc.title | HUMAP: Hierarchical Uniform Manifold Approximation and Projection | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-8580-2779[1] | |
| unesp.author.orcid | 0000-0002-9493-145X[2] | |
| unesp.author.orcid | 0000-0002-2316-760X[3] | |
| unesp.author.orcid | 0000-0002-2901-935X[4] |

