Logo do repositório

HUMAP: Hierarchical Uniform Manifold Approximation and Projection

dc.contributor.authorMarcilio-Jr, Wilson E. [UNESP]
dc.contributor.authorEler, Danilo M. [UNESP]
dc.contributor.authorPaulovich, Fernando V.
dc.contributor.authorMartins, Rafael M.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionEindhoven University of Technology (TU/e)
dc.contributor.institutionLinnaeus University
dc.date.accessioned2025-04-29T20:02:53Z
dc.date.issued2024-01-01
dc.description.abstractDimensionality reduction (DR) techniques help analysts to understand patterns in high-dimensional spaces. These techniques, often represented by scatter plots, are employed in diverse science domains and facilitate similarity analysis among clusters and data samples. For datasets containing many granularities or when analysis follows the information visualization mantra, hierarchical DR techniques are the most suitable approach since they present major structures beforehand and details on demand. This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures and preserve the mental map throughout hierarchical exploration. We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling.en
dc.description.affiliationSão Paulo State University
dc.description.affiliationEindhoven University of Technology (TU/e)
dc.description.affiliationLinnaeus University
dc.description.affiliationUnespSão Paulo State University
dc.identifierhttp://dx.doi.org/10.1109/TVCG.2024.3471181
dc.identifier.citationIEEE Transactions on Visualization and Computer Graphics.
dc.identifier.doi10.1109/TVCG.2024.3471181
dc.identifier.issn1941-0506
dc.identifier.issn1077-2626
dc.identifier.scopus2-s2.0-85205939462
dc.identifier.urihttps://hdl.handle.net/11449/305357
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Visualization and Computer Graphics
dc.sourceScopus
dc.subjectDimensionality Reduction
dc.subjectHierarchical Exploration
dc.subjectManifold Learning
dc.titleHUMAP: Hierarchical Uniform Manifold Approximation and Projectionen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-8580-2779[1]
unesp.author.orcid0000-0002-9493-145X[2]
unesp.author.orcid0000-0002-2316-760X[3]
unesp.author.orcid0000-0002-2901-935X[4]

Arquivos

Coleções