Publicação: Fractional Calculus of the Lerch Zeta Function
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
This paper deals with the fractional derivative of the Lerch zeta function. We compute the fractional derivative of the Lerch zeta function using a complex generalization of the Grünwald–Letnikov derivative. This definition of fractional derivative, fulfilling the generalized Leibniz rule, allows us to derive a functional equation for the fractional derivative of the Lerch zeta function. This functional equation is rewritten in a simplified form that reduces its computational cost. Furthermore, we prove an approximate functional equation for the fractional derivative of the Lerch zeta function.
Descrição
Palavras-chave
computational cost, functional equation, generalized Leibniz rule, Grünwald–Letnikov fractional derivative, Lerch zeta function
Idioma
Inglês
Como citar
Mediterranean Journal of Mathematics, v. 19, n. 3, 2022.