Logo do repositório

Estimation of Biophysical Parameters of Forage Cactus Under Different Agricultural Systems Through Vegetation Indices and Machine Learning Using RGB Images Acquired with Unmanned Aerial Vehicles

dc.contributor.authorSilva, Gabriel Italo Novaes da
dc.contributor.authorJardim, Alexandre Maniçoba da Rosa Ferraz [UNESP]
dc.contributor.authorSantos, Wagner Martins dos
dc.contributor.authorBezerra, Alan Cézar
dc.contributor.authorAlba, Elisiane
dc.contributor.authorSilva, Marcos Vinícius da
dc.contributor.authorSilva, Jhon Lennon Bezerra da
dc.contributor.authorSouza, Luciana Sandra Bastos de
dc.contributor.authorMarinho, Gabriel Thales Barboza
dc.contributor.authorMontenegro, Abelardo Antônio de Assunção
dc.contributor.authorSilva, Thieres George Freire da
dc.contributor.institutionFederal Rural University of Pernambuco
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of Campina Grande—UFCG
dc.contributor.institutionGoiano Federal Institute
dc.date.accessioned2025-04-29T20:07:07Z
dc.date.issued2024-12-01
dc.description.abstractThe objective of this study was to correlate the biophysical parameters of forage cactus with visible vegetation indices obtained by unmanned aerial vehicles (UAVs) and predict them with machine learning in different agricultural systems. Four experimental units were conducted. Units I and II had different plant spacings (0.10, 0.20, 0.30, 0.40, and 0.50 m) with East–West and North–South planting directions, respectively. Unit III had row spacings (1.00, 1.25, 1.50, and 1.75 m), and IV had cutting frequencies (6, 9, 12 + 6, and 18 months) with the clones “Orelha de Elefante Mexicana”, “Miúda”, and “IPA Sertânia”. Plant height and width, cladode area index, fresh and dry matter yield (FM and DM), dry matter content, and fifteen vegetation indices of the visible range were analyzed. The RGBVI and ExGR indices stood out for presenting greater correlations with FM and DM. The prediction analysis using the Random Forest algorithm, highlighting DM, which presented a mean absolute error of 1.39, 0.99, and 1.72 Mg ha−1 in experimental units I and II, III, and IV, respectively. The results showed potential in the application of machine learning with RGB images for predictive analysis of the biophysical parameters of forage cactus.en
dc.description.affiliationDepartment of Agricultural Engineering Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos
dc.description.affiliationDepartment of Biodiversity Institute of Biosciences São Paulo State University—UNESP, Avenue 24A, 1515, SP
dc.description.affiliationAcademic Unit of Serra Talhada Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/nPE
dc.description.affiliationDepartment of Forest Engineering Federal University of Campina Grande—UFCG, PB
dc.description.affiliationCerrado Irrigation Graduate Program Goiano Federal Institute, Campus Ceres, GO-154, km 218–Zona RuralGO
dc.description.affiliationUnespDepartment of Biodiversity Institute of Biosciences São Paulo State University—UNESP, Avenue 24A, 1515, SP
dc.description.sponsorshipFundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
dc.description.sponsorshipIdFundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco: BCT-0221-5.03/21
dc.identifierhttp://dx.doi.org/10.3390/agriculture14122166
dc.identifier.citationAgriculture (Switzerland), v. 14, n. 12, 2024.
dc.identifier.doi10.3390/agriculture14122166
dc.identifier.issn2077-0472
dc.identifier.scopus2-s2.0-85213248026
dc.identifier.urihttps://hdl.handle.net/11449/306768
dc.language.isoeng
dc.relation.ispartofAgriculture (Switzerland)
dc.sourceScopus
dc.subjectautomated procedures
dc.subjectExGR
dc.subjectforage cactus
dc.subjectRandom Forest
dc.subjectRGBVI
dc.subjectvisible vegetation indices
dc.titleEstimation of Biophysical Parameters of Forage Cactus Under Different Agricultural Systems Through Vegetation Indices and Machine Learning Using RGB Images Acquired with Unmanned Aerial Vehiclesen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-7094-3635[2]
unesp.author.orcid0000-0002-3584-1323[3]
unesp.author.orcid0000-0002-9986-9464[4]
unesp.author.orcid0000-0002-1318-2320[6]
unesp.author.orcid0000-0002-2611-4036[7]
unesp.author.orcid0000-0003-4795-7718[9]
unesp.author.orcid0000-0002-8355-4935[11]

Arquivos

Coleções