Logotipo do repositório
 

Publicação:
Scene Change Detection Using Multiscale Cascade Residual Convolutional Neural Networks

dc.contributor.authorSantos, Daniel F. S. [UNESP]
dc.contributor.authorPires, Rafael G. [UNESP]
dc.contributor.authorColombo, Danilo
dc.contributor.authorPap, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPetr Brasileiro SA Petrobras
dc.date.accessioned2021-06-25T15:05:14Z
dc.date.available2021-06-25T15:05:14Z
dc.date.issued2020-01-01
dc.description.abstractScene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions. Mostly, visual knowledge-based computer intelligent systems, like traffic monitoring, video surveillance, and anomaly detection, need to use change detection techniques. Amongst the most prominent detection methods, there are the learning-based ones, which besides sharing similar training and testing protocols, differ from each other in terms of their architecture design strategies. Such architecture design directly impacts on the quality of the detection results, and also in the device resources capacity, like memory. In this work, we propose a novel Multiscale Cascade Residual Convolutional Neural Network that integrates multiscale processing strategy through a Residual Processing Module, with a Segmentation Convolutional Neural Network. Experiments conducted on two different datasets support the effectiveness of the proposed approach, achieving average overall F-measure results of 0.9622 and 0.9664 over Change Detection 2014 and PetrobrasROUTES datasets respectively, besides comprising approximately eight times fewer parameters. Such obtained results place the proposed technique amongst the top four state-of-the-art scene change detection methods.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationPetr Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipIdCNPq: 307066/20177
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdPetrobras: 2017/00285-6
dc.format.extent108-115
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI51738.2020.00023
dc.identifier.citation2020 33rd Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi 2020). New York: Ieee, p. 108-115, 2020.
dc.identifier.doi10.1109/SIBGRAPI51738.2020.00023
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/210334
dc.identifier.wosWOS:000651203300015
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 33rd Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi 2020)
dc.sourceWeb of Science
dc.titleScene Change Detection Using Multiscale Cascade Residual Convolutional Neural Networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos