Publicação: Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review
dc.contributor.author | Zhang, Xue | |
dc.contributor.author | Acencio, Marcio Luis [UNESP] | |
dc.contributor.author | Lemke, Ney [UNESP] | |
dc.contributor.institution | Xiangnan Univ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Norwegian Univ Sci & Technol | |
dc.date.accessioned | 2018-11-26T16:27:50Z | |
dc.date.available | 2018-11-26T16:27:50Z | |
dc.date.issued | 2016-03-08 | |
dc.description.abstract | Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. | en |
dc.description.affiliation | Xiangnan Univ, Dept Comp Sci, Chenzhou, Hunan, Peoples R China | |
dc.description.affiliation | Sao Paulo State Univ, Inst Biosci Botucatu, Dept Phys & Biophys, Botucatu, SP, Brazil | |
dc.description.affiliation | Norwegian Univ Sci & Technol, Dept Canc Res & Mol Med, Fac Med, N-7034 Trondheim, Norway | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Inst Biosci Botucatu, Dept Phys & Biophys, Botucatu, SP, Brazil | |
dc.description.sponsorship | National Natural Science Foundation of China | |
dc.description.sponsorship | Guizhou Provincial Science and Technology Fund | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | National Natural Science Foundation of China: 61402423 | |
dc.description.sponsorshipId | National Natural Science Foundation of China: 61502343 | |
dc.description.sponsorshipId | National Natural Science Foundation of China: 61303112 | |
dc.description.sponsorshipId | Guizhou Provincial Science and Technology Fund: [2015]2135 | |
dc.description.sponsorshipId | FAPESP: 2013/02018-4 | |
dc.format.extent | 11 | |
dc.identifier | http://dx.doi.org/10.3389/fphys.2016.00075 | |
dc.identifier.citation | Frontiers In Physiology. Lausanne: Frontiers Media Sa, v. 7, 11 p., 2016. | |
dc.identifier.doi | 10.3389/fphys.2016.00075 | |
dc.identifier.file | WOS000371564800001.pdf | |
dc.identifier.issn | 1664-042X | |
dc.identifier.lattes | 7977035910952141 | |
dc.identifier.uri | http://hdl.handle.net/11449/161271 | |
dc.identifier.wos | WOS:000371564800001 | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media Sa | |
dc.relation.ispartof | Frontiers In Physiology | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | essential genes/proteins | |
dc.subject | machine learning | |
dc.subject | systems biology | |
dc.subject | prediction models | |
dc.subject | network topological features | |
dc.title | Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review | en |
dc.type | Resenha | |
dcterms.rightsHolder | Frontiers Media Sa | |
dspace.entity.type | Publication | |
unesp.author.lattes | 7977035910952141 | |
unesp.author.orcid | 0000-0001-7463-4303[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu | pt |
unesp.department | Física e Biofísica - IBB | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000371564800001.pdf
- Tamanho:
- 526.65 KB
- Formato:
- Adobe Portable Document Format
- Descrição: