Logo do repositório
 

An Unmanned Aerial Vehicles Journey into the World of Sugarcane

dc.contributor.advisorSilva, Rouverson Pereira da
dc.contributor.authorBarbosa Júnior, Marcelo Rodrigues
dc.contributor.coadvisorZerbato, Cristiano
dc.contributor.coadvisorShiratsuchi, Luciano Shozo
dc.date.accessioned2024-05-08T11:01:15Z
dc.date.available2024-05-08T11:01:15Z
dc.date.issued2024-02-22
dc.description.abstractIn this PhD Dissertation we investigated the use of unmanned aerial vehicles (UAVs) in sugarcane production, emphasizing their increasing importance in agriculture and the strategic role of sugarcane. The research includes an integrative review of UAV applications from 2016 to 2021, analyzing monitoring and management strategies and assessing the contributions of various countries and institutions. Consequently, we present a new protocol to determine ideal UAV flight times to discriminate sugarcane cultivars during early stage of development using multispectral images and vegetation indices. Furthermore, we used machine learning (ML) algorithms combined with UAV imagery to predict sugar content in sugarcane, offering a superior, non-invasive, and scalable method compared to traditional techniques. This approach was also enhanced with the incorporation of a proximal active sensor, improving the prediction capabilities for bioethanol feedstocks and promoting sustainable land use by considering all plant components as valuable resources. The final chapter summarizes the progress of UAV technology applications in sugarcane, discusses the utility and transferability of the methods developed, and describes future research directions to further advance in this field. Finally, this PhD Dissertation offers significant insight into optimizing sugarcane production through the integration of innovative technologies.en
dc.description.abstractNesta Tese de Doutorado investigamos o uso de veículos aéreos não tripulados (VANTs) na produção de cana-de-açúcar, enfatizando sua crescente importância na agricultura e o papel estratégico da cana-de-açúcar. A pesquisa inclui uma revisão integrativa das aplicações de VANTs de 2016 a 2021, analisando as estratégias de monitoramento e gerenciamento e avaliando as contribuições de diversos países e instituições. Consequentemente, apresentamos um novo protocolo para determinar horários ideais de voo de VANT para discriminar cultivares de cana-de-açúcar durante estádio inicial de desenvolvimento das plantas usando imagens multiespectrais e índices de vegetação. Além disso, usamos algoritmos de machine learning (ML) combinados com imagens de VANT para prever o teor de açúcar da cana-de-açúcar, oferecendo um método não invasivo e escalável superior às técnicas tradicionais. Essa abordagem também foi ampliada com a incorporação de um sensor ativo proximal, melhorando os recursos de predição para matérias-primas de bioetanol e promovendo o uso sustentável da terra ao considerar todos os componentes da planta como recursos valiosos. O capítulo final resume o progresso das aplicações da tecnologia de VANT na cana-de-açúcar, discute a utilidade e a capacidade de transferência dos métodos desenvolvidos e descreve as futuras direções de pesquisa para avançar ainda mais nesse campo. Por fim, esta Tese de Doutorado oferece uma visão significativa da otimização da produção de cana-de-açúcar por meio da integração de tecnologias inovadoras.pt
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipId88887.610238/2021-00
dc.description.sponsorshipId2022/13992-0
dc.identifier.citationBARBOSA JR, M. R. - Uma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcar - 2024, 158f - Tese (Doutorado em Agronomia) - Universidade Estadual Paulista, Jaboticabal, 2024.pt
dc.identifier.latteshttp://lattes.cnpq.br/7949757920964231
dc.identifier.orcidhttps://orcid.org/0000-0002-7207-2156
dc.identifier.urihttps://hdl.handle.net/11449/255529
dc.language.isoeng
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectUnmanned Aerial Vehiclesen
dc.subjectSugarcaneen
dc.subjectRemote Sensingen
dc.subjectDigital Agricultureen
dc.subjectMachine Learningen
dc.titleAn Unmanned Aerial Vehicles Journey into the World of Sugarcaneen
dc.title.alternativeUma Jornada de Veículos Aéreos Não Tripulados no Mundo da Cana-de-Açúcarpt
dc.typeTese de doutoradopt
dcterms.impactSocial: The integration of remote sensing, machine learning, and multispectral data in sugarcane monitoring carries profound social implications. By efficiently discriminating cultivars, predicting yield quality, and mapping feedstocks through non-invasive methods, these advancements offer unprecedented opportunities for sustainable.++++++-+agriculture. It promotes modern agriculture, reducing labor intensity, fostering education and skill development, and enhancing rural development. Collaboration and data sharing support knowledge exchange and community building, while sustainable practices raise environmental awareness. This highlights technology-driven digital agriculture's potential for environmental sustainability and social well-being. Environmental: These methods enhance resource efficiency by enabling precise decision-making, reducing waste, and minimizing the environmental footprint of resource-intensive agricultural practices. By pinpointing optimal harvest times and resource application, they lead to lower emissions, conserving energy and promoting sustainable agriculture. Furthermore, these techniques support soil health, prevent overexploitation of resources, and reduce the need for expanding agricultural land into natural habitats, thus aiding in the preservation of biodiversity. Altogether, this approach holds promise for environmentally sustainable sugarcane production, fostering a more ecologically balanced and efficient agricultural industry. Economic: Optimizing resource management and harvest decisions enhances sugarcane farming productivity, increasing income and profitability. Improved crop quality elevates market competitiveness, encouraging prices and the industry's financial allure. This leads to cost savings, reinforcing economic sustainability and diversification prospects. Adoption of advanced technologies and data-driven practices attracts investment, incentives innovation, and drives infrastructure development, benefiting rural and urban economies. Strengthening the sugarcane value chain, potential job creation, and intensified exports further bolster economic growth. These practices fortify the industry against market fluctuations, ensuring a stable and prosperous economic future for sugarcane-producing regions.en
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.embargoOnline
unesp.examinationboard.typeBanca pública
unesp.graduateProgramAgronomia (Produção Vegetal) - FCAV 33004102001P4
unesp.knowledgeAreaAgriculturapt
unesp.researchAreaAgricultura Digital.pt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
barbosajunior_mr_dr_jabo.pdf
Tamanho:
3.39 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.14 KB
Formato:
Item-specific license agreed upon to submission
Descrição: