Logotipo do repositório
 

Publicação:
RaDE: A Rank-based Graph Embedding Approach

dc.contributor.authorFernando, Filipe Alves de [UNESP]
dc.contributor.authorGuimaraes Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorSousa, Gustavo Jose de [UNESP]
dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorGuilherme, Ivan Rizzo [UNESP]
dc.contributor.authorFarinella, G. M.
dc.contributor.authorRadeva, P.
dc.contributor.authorBraz, J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T17:45:24Z
dc.date.available2021-06-25T17:45:24Z
dc.date.issued2020-01-01
dc.description.abstractDue to possibility of capturing complex relationships existing between nodes, many application benefit of being modeled with graphs. However, performance issues can be observed on large scale networks, making it computationally unfeasible to process information in various scenarios. Graph Embedding methods are usually used for finding low-dimensional vector representations for graphs, preserving its original properties such as topological characteristics, affinity and shared neighborhood between nodes. In this way, retrieval and machine learning techniques can be exploited to execute tasks such as classification, clustering, and link prediction. In this work, we propose RaDE (Rank Diffusion Embedding), an efficient and effective approach that considers rank-based graphs for learning a low-dimensional vector. The proposed approach was evaluated on 7 network datasets such as a social, co-reference, textual and image networks, with different properties. Vector representations generated with RaDE achieved effective results in visualization and retrieval tasks when compared to vector representations generated by other recent related methods.en
dc.description.affiliationUNESP Sao Paulo State Univ, Inst Geosci & Exact Sci, Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Inst Geosci & Exact Sci, Rio Claro, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.description.sponsorshipIdPetrobras: 2014/00545-0
dc.description.sponsorshipIdPetrobras: 2017/00285-6
dc.format.extent142-152
dc.identifierhttp://dx.doi.org/10.5220/0008985901420152
dc.identifier.citationProceedings Of The 15th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications, Vol 5: Visapp. Setubal: Scitepress, p. 142-152, 2020.
dc.identifier.doi10.5220/0008985901420152
dc.identifier.urihttp://hdl.handle.net/11449/210488
dc.identifier.wosWOS:000576655800014
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofProceedings Of The 15th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications, Vol 5: Visapp
dc.sourceWeb of Science
dc.subjectRaDE
dc.subjectGraph Embedding
dc.subjectNetwork Representation Learning
dc.subjectRanking
dc.titleRaDE: A Rank-based Graph Embedding Approachen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderScitepress
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos