Assessing Land Use and Cover Changes arising from the 2022 water crisis in Southeast China: A comparative analysis of Remote Sensing Imagery classifications and Machine Learning algorithms
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The water crisis in the southeast region of China in 2022, caused by one of the worst heatwaves on record, was characterized by severe shortages of water resources, leading to challenges for local communities, agriculture, and industry. To analyze changes in land use and land cover (LULC) in the Jialing River region, Chongqing, China, we compared Remote Sensing (RS) imagery classifications before and after the intense heat waves of 2022. We evaluated the performance of two machine learning algorithms, KDTree KNN and Random Forest (RF), in LULC classifications. The classifications were carried out based on the RS images from the OLI/Landsat 8 system, NDWI index, and SRTM data. The model performances were similar, the classification accuracy showed that the RF algorithm was superior to KDTree KNN. The RF LULC classification and area calculation corroborate with the visual analysis, reaffirming the superiority of RF, which shows a decrease in water surface area, unlike DKTree KNN.
Descrição
Palavras-chave
and K-Nearest Neighbors Classifier, Land Use and Land Cover, machine learning, OLI/Landsat 8, random forest, remote sensing imagery
Idioma
Inglês
Citação
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 253-260, 2024.




