Logotipo do repositório
 

Publicação:
Automatic frontal sinus recognition in computed tomography images for person identification

dc.contributor.authorSouza, Luis A. de [UNESP]
dc.contributor.authorMarana, Aparecido N. [UNESP]
dc.contributor.authorWeber, Silke A.T. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:19:02Z
dc.date.available2018-12-11T17:19:02Z
dc.date.issued2018-05-01
dc.description.abstractIn many cases of person identification the use of biometric features obtained from the hard tissues of the human body, such as teeth and bones, may be the only option. This paper presents a new method of person identification based on frontal sinus features, extracted from computed tomography (CT) images of the skull. In this method, the frontal sinus is automatically segmented in the CT image using an algorithm developed in this work. Next, shape features are extracted from both hemispheres of the segmented frontal sinus by using BAS (Beam Angle Statistics) method. Finally, L2 distance is used in order to recognize the frontal sinus and identify the person. The novel frontal sinus recognition method obtained 77.25% of identification accuracy when applied on a dataset composed of 310 CT images obtained from 31 people, and the automatic frontal sinus segmentation in CT images obtained a mean Cohen Kappa coefficient equal to 0.8852 when compared to the ground truth (manual segmentation).en
dc.description.affiliationSão Paulo State University (UNESP) Department of Computing Faculty of Sciences
dc.description.affiliationSão Paulo State University (UNESP) Department of Ophthalmology and Otorhinolaryngology Botucatu Medical School
dc.description.affiliationUnespSão Paulo State University (UNESP) Department of Computing Faculty of Sciences
dc.description.affiliationUnespSão Paulo State University (UNESP) Department of Ophthalmology and Otorhinolaryngology Botucatu Medical School
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent252-264
dc.identifierhttp://dx.doi.org/10.1016/j.forsciint.2018.03.029
dc.identifier.citationForensic Science International, v. 286, p. 252-264.
dc.identifier.doi10.1016/j.forsciint.2018.03.029
dc.identifier.file2-s2.0-85044582322.pdf
dc.identifier.issn1872-6283
dc.identifier.issn0379-0738
dc.identifier.scopus2-s2.0-85044582322
dc.identifier.urihttp://hdl.handle.net/11449/176097
dc.language.isoeng
dc.relation.ispartofForensic Science International
dc.relation.ispartofsjr0,981
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBiometrics
dc.subjectComputed tomography
dc.subjectFrontal sinus recognition
dc.subjectImage segmentation
dc.subjectPerson identification
dc.titleAutomatic frontal sinus recognition in computed tomography images for person identificationen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes6027713750942689[2]
unesp.author.orcid0000-0003-4861-7061[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt
unesp.departmentOftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço - FMBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85044582322.pdf
Tamanho:
3.38 MB
Formato:
Adobe Portable Document Format
Descrição: