Logotipo do repositório
 

Publicação:
Bayesian approach, traditional method, and mixed models for multienvironment trials of soybean

dc.contributor.authorSilva, Alysson Jalles da
dc.contributor.authorSanches, Adhemar [UNESP]
dc.contributor.authorBastos Andrade, Andrea Carla
dc.contributor.authorFerreira de Oliveira, Gustavo Hugo
dc.contributor.authorDi Mauro, Antonio Orlando [UNESP]
dc.contributor.institutionNova Amer Agr Ltda
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)
dc.date.accessioned2019-10-05T04:10:41Z
dc.date.available2019-10-05T04:10:41Z
dc.date.issued2018-10-01
dc.description.abstractThe objective of this work was to compare the Bayesian approach and the frequentist methods to estimate means and genetic parameters in soybean multienvironment trials. Fifty-one soybean lines and four controls were evaluated in a randomized complete block design, in six environments, with three replicates, and soybean grain yield was determined. The half-normal prior and uniform distributions were used in combination with parameters obtained from data of 18 genotypes collected in previous and related experiments. The genotypic values of the genotypes of high- and low-grain yield, clustered by the Bayesian approach, differed from the means obtained by the frequentist inference. Soybean assessed through the Bayesian approach showed genetic parameter values of the mixed model (REML/Blup) close to those of the following variables: mean heritability (h(2)mg), accuracy of genotype selection (Acgen), coefficient of genetic variation (CVgi%), and coefficient of environmental variation (CVe%). Therefore, the mixed model methodology and the Bayesian approach lead to similar results for genetic parameters in multienvironment trials.en
dc.description.affiliationNova Amer Agr Ltda, Fazenda Nova Amer S-N, BR-19820000 Taruma, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias Agr & Vet, Campus Jaboticabal, BR-14884900 Jaboticabal, SP, Brazil
dc.description.affiliationUniv Fed Vicosa, Ave PH Rolfs S-N,Campus Univ, BR-36570900 Vicosa, MG, Brazil
dc.description.affiliationUniv Fed Sergipe, Nucleo Grad Agron, Campus Sertao,Rodovia Engenheiro Jorge Neto,Km 3, BR-49680000 Nossa Senhora Da Gloria, SE, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias Agr & Vet, Campus Jaboticabal, BR-14884900 Jaboticabal, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent1093-1100
dc.identifierhttp://dx.doi.org/10.1590/S0100-204X2018001000002
dc.identifier.citationPesquisa Agropecuaria Brasileira. Brasilia Df: Empresa Brasil Pesq Agropec, v. 53, n. 10, p. 1093-1100, 2018.
dc.identifier.doi10.1590/S0100-204X2018001000002
dc.identifier.fileS0100-204X2018001001093.pdf
dc.identifier.issn0100-204X
dc.identifier.scieloS0100-204X2018001001093
dc.identifier.urihttp://hdl.handle.net/11449/186516
dc.identifier.wosWOS:000452380700002
dc.language.isoeng
dc.publisherEmpresa Brasil Pesq Agropec
dc.relation.ispartofPesquisa Agropecuaria Brasileira
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectGlycine max
dc.subjectmathematical modeling
dc.subjectprior distribution in plant breeding
dc.titleBayesian approach, traditional method, and mixed models for multienvironment trials of soybeanen
dc.typeArtigo
dcterms.rightsHolderEmpresa Brasil Pesq Agropec
dspace.entity.typePublication
unesp.author.lattes1275652518822095[5]
unesp.author.orcid0000-0003-1662-5745[5]
unesp.departmentCiências Exatas - FCAVpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0100-204X2018001001093.pdf
Tamanho:
332.19 KB
Formato:
Adobe Portable Document Format